Контрольная работа: Активная и пассивная безопасность автомобиля. Системы активной и пассивной безопасности автомобиля Что такое активная и пассивная безопасность

Содержание

Контрольная работа: Активная и пассивная безопасность автомобиля. Системы активной и пассивной безопасности автомобиля Что такое активная и пассивная безопасность

Согласно статистике, в более 80% всех дорожно-транспортных происшествий участвуют автомобили. Более одного миллиона людей каждый год погибают и около 500 тысяч получают телесные повреждения. Стремясь обратить взор на эту проблему, каждое 3-е воскресенье ноября было объявлено ООН «Всемирным днём памяти жертв дорожных аварий». Современные системы безопасности автомобиля нацелены на уменьшение существующей печальной статистики по этому вопросу. Конструктора новых авто всегда пристально следуют нормам производства и . Для этого они моделируют всевозможные опасные ситуации на краш-тестах. Поэтому перед выпуском в свет авто проходит тщательную проверку и годность для безопасного использования на дороге.

Но полностью устранить этот вид происшествий невозможно при таком уровне развития техники и общества. Поэтому основной упор делается на предупреждение аварийной ситуации и ликвидацию последствий после неё.

Тесты по безопасности авто

Главной организацией по оценке безопасности автомобилей является «Европейская ассоциация испытания новых автомобилей». Существует она с 1995 года. Каждой новой марке машины, прошедшей через , выставляется оценка по пятизвездной шкале – чем звезд больше, тем лучше.

Например, благодаря тестам они доказали, что использование высоких подушек безопасности уменьшают риск получения травмы головы в 5-6 раз.

Параметры активной безопасности

Активные системы безопасности автомобиля – комплекс конструктивных и эксплуатационных свойств, которые направлены на уменьшение вероятности ДТП на дороге.

Разберём основные параметры, которые отвечают за уровень активной безопасности.

    За эффективность управления автомобилем во время торможения отвечают его тормозные свойства , исправность которых и позволяет избежать ДТП. За корректировку уровня и системы колёс в целом отвечает антиблокировочная система.

Системы активной безопасности

Самыми популярными системами активной безопасности, значительно повышающими эффективность тормозной системы, являются:

1) Антиблокировочная система тормозов . Она устраняет блокировку колёс во время торможения. Задача системы: предотвратить скольжение авто в случае потери водителем управления во время аварийного торможения. АБС уменьшает тормозной путь, что позволит избежать наезда на пешехода или угодить в кювет. антиблокировочной системы тормозов является антипробуксовочная система и электронный контроль устойчивости;

2) Антипробуксовочная система . предназначена для улучшения управления автомобилем в сложных погодных условиях и условиях плохого сцепления, используя механизм воздействия на ведущие колёса;

3) . Предотвращает неприятные заносы автомобиля благодаря использованию электронного компьютера, который и управляет моментом силы колеса или колёс одновременно. Система под руководством компьютера берёт управление на себя, когда близка вероятность потери управления человеком – поэтому и является очень эффективной системой безопасности авто;

4) Система, распределяющая тормозные усилия . Дополняет антиблокировочную систему тормозов. Основное отличие состоит в том, что СРТ помогает управлять тормозной системой на протяжении всего движения автомобиля, а не только во время аварийной ситуации. Она отвечает за равномерность распределения тормозных усилий по всем колёсам, дабы сохранить установленную водителем траекторию движения;

5) Механизм электронной блокировки дифференциала . Суть работы её такова: во время заноса или скольжения, часто возникает ситуация, что одно из колёс зависает в воздухе, продолжая крутиться, а опорное колесо – перестаёт. Водитель теряет контроль над управлением автомобиля, что создаёт риск аварии на дороге. В свою очередь, блокировка дифференциала позволяет передать крутящийся момент полуосям или карданам, нормализуя движение авто.

6) Механизм автоматического экстренного торможения . Помогает в тех случаях, когда водитель не успевает полностью нажать на педаль тормоза, т. е. система сама автоматически оказывает тормозное давление.

7) Система предупреждения о приближении пешеходов . При опасном приближении пешехода к автомобилю система подаст звуковой сигнал, который позволит избежать происшествия на дороге и сохранить ему жизнь.

Также существуют системы безопасности (ассистенты), которые вступают в работу до наступления аварии, как только почувствуют потенциальную угрозу жизни водителя, при этом они перехватывают на себя ответственность за рулевое управление и тормозную систему. Рывок для развития этих механизмов дал прорыв в изучении электронных систем: выпускаются новые , увеличивается полезность блоков управления.

Безопасность зависит от трех важных характеристик автомобиля: размер и вес, средства пассивной безопасности, которые помогают выжить в аварии и избежать травм, и средства активной безопасности, которые помогают избегать дорожных происшествий.
Однако при столкновении более тяжелые машины с относительно плохими оценками в краш-тестах могут показать лучшие результаты, чем легкие автомобили с отличными оценками. В компактных и малых автомобилях погибает в два раза больше людей, чем в больших. Об этом стоит всегда помнить.

Средства пассивной безопасности помогают водителю и пассажирам выжить в аварии и остаться без серьезных травм. Размер автомобиля – это тоже средство пассивной безопасности: больше = безопаснее. Но есть и другие важные моменты.

Ремни безопасности стали лучшим из когда-либо придуманных устройств защиты водителя и пассажиров. Здравая идея привязать человека к сиденью, чтобы спасти ему жизнь при аварии, появилась еще в 1907 году. Тогда водителя и пассажиров пристегивали только на уровне талии. На серийных автомобилях первой ремни поставила шведская компания Volvo в 1959 году. Ремни в большинстве машин трехточечные, инерционные, в некоторых спортивных автомобилях используются и четырехточечные и даже пятиточечные, чтобы лучше удержать водителя в седле. Ясно одно: чем плотнее тебя прижимает к креслу, тем безопаснее. Современные системы ремней безопасности имеют автоматические преднатяжители, которые при аварии выбирают провисания ремней, повышая защиту человека, и сохраняют место для раскрытия подушек безопасности. Важно знать, что хотя подушки безопасности и защищают от серьезных травм, ремни безопасности абсолютно необходимы для обеспечения полной безопасности водителя и пассажиров. Американская организация безопасности движения NHTSA на основании своих исследований сообщает, что использование ремней безопасности снижает риск смертельного исхода на 45-60% в зависимости от типа автомобиля.

Без подушек безопасности в машине никак нельзя, этого теперь не знает только ленивый. Они нас и от удара спасут, и от разбитого стекла. Но первые подушки были как бронебойный снаряд – раскрывались под воздействием датчиков удара и выстреливали навстречу телу со скоростью 300 км/ч. Аттракцион на выживание, да и только, не говоря уже о том ужасе, который испытывал человек в момент хлопка. Теперь подушки встречаются даже в самых дешевых автомобильчиках и умеют раскрываться с разной скоростью в зависимости от силы столкновения. Устройство пережило много модификаций и вот уже 25 лет спасает человеческие жизни. Однако опасность остается до сих пор. Если забыл или поленился пристегнуться, то подушка легко может… убить. Во время аварии, даже при небольшой скорости, тело по инерции летит вперед, раскрывшаяся подушка его остановит, зато голову с огромной скоростью отфутболит назад. У хирургов это называется “хлыстовая травма”. В большинстве случаев это грозит переломом шейных позвонков. В лучшем -вечной дружбой с вертеброневрологами. Это такие врачи, которым иногда удается поставить ваши позвонки на место. Но шейные позвонки, как известно, лучше не трогать,они проходят под категорией неприкасаемых. Именно поэтому во многих машинах раздается противный писк, который не столько напоминает нам, что нужно пристегиваться, сколько сообщает, что подушка НЕ раскроется, если человек не пристегнут. Внимательно прислушайтесь к тому, что вам поет ваша машина. Подушки безопасности разработаны специально, чтобы работать вместе ремнями безопасности и ни в коем случае не исключают необходимость их использования. По сведениям американской организации NHTSA использование подушек безопасности снижает риск смертельного исхода при аварии на 30-35% в зависимости от типа автомобиля.
Во время столкновения ремни и подушки безопасности работают совместно. Комбинация их работы на 75% более эффективна в предотвращении серьезных травм головы и на 66% более эффективна в предотвращении травм грудной клетки. Боковые подушки безопасности тоже значительно улучшаю защиту водителя и пассажиров. Производители автомобилей используют также двухступенчатые подушки безопасности, которые раскрываются поэтапно одна за другой, чтобы избежать возможных травм, наносимых детям и невысоким взрослым от применения одноступенчатых, более дешевых подушек безопасности. В связи с этим, правильней сажать детей только на задние места в автомобилях любых типов.

Подголовники призваны предотвращать травмы от внезапного резкого движения головы и шеи при столкновении задней частью автомобиля. В действительности часто подголовники практически не защищают от травм. Эффективная защита при использовании подголовника может быть достигнута, если он находится точно на линии центра головы на уровне ее центра тяжести и не далее 7 см от задней ее части. Помните, что некоторые опции сидений изменяют размер и положение подголовника. Значительно повышают безопасность активные подголовники . Принцип их работы основан на простых физических законах, в соответствии с которыми голова откидывается назад несколько позднее корпуса. Активные подголовники используют давление корпуса на спинку сидения в момент удара, что вызывает смещение подголовника вверх и вперед, предотвращая вызывающее травму резкое откидывание головы назад. При ударе в заднюю часть автомобиля, новые подголовники срабатывают одновременно со спинкой сиденья, чтобы снизить риск травмы позвонков не только шейного, но и поясничного отделов. После удара, поясница сидящего в кресле непроизвольно движется вглубь спинки, при этом встроенные датчики дают «команду» подголовнику выдвинуться вперед-вверх, чтобы равномерно распределить нагрузку на позвоночник. Выдвигаясь при ударе, подголовник надежно фиксирует затылочную часть головы, предотвращая чрезмерный изгиб шейных позвонков. Стендовые испытания показали, что новая система эффективнее аналогичной уже существующей на 10-20%. При этом, однако, многое зависит от того, в каком положении находится человек в момент удара, его веса, а также того, пристегнут ли тот ремнем безопасности.

Структурная целостность (целостность каркаса автомобиля) это ещё один важный компонент пассивной безопасности автомобиля. Для каждого автомобиля он тестируется, перед тем как пойти в производство. Детали каркаса не должны изменять свою форму при столкновении, в то время как другие детали должны поглощать энергию удара. Сминаемые зоны спереди и сзади стали, пожалуй, тут самым серьезным достижением. Чем лучше будут сминаться капот и багажник, тем меньше достанется пассажирам. Главное, чтобы двигатель во время аварии уходил в пол. Инженеры разрабатывают все новые и новые комбинации материалов, чтобы погасить энергию удара. Результаты их деятельности можно очень наглядно увидеть на страшилках краш-тестов. Между капотом и багажником, как известно, находится салон. Так вот он и должен стать капсулой безопасности. И этот жесткий каркас ни в коем случае не должен смяться. Прочность жесткой капсулы дает возможность выжить даже в самом маленьком автомобиле. Если спереди и сзади каркас защищен капотом и багажником, то по бокам за нашу безопасность отвечают только металлические брусья в дверях. При самом страшном ударе, боковом, они не могут защитить, поэтому тут используют активные системы – боковые подушки безопасности и шторки, которые тоже блюдут наши интересы.

Также к элементам пассивной безопасности относятся:
-передний бампер, поглощающий часть кинетической энергии при столкновении;
-травмобезопасные детали внутреннего интерьера пассажирского салона.

Активная безопасность автомобиля

В арсенале активной безопасности автомобиля существует много противоаварийных систем. Среди них есть старые системы и новомодные изобретения. Перечислим только некоторые из них: антиблокировочная система тормозов (ABS), traction control, electronic stability control (ESC), система ночного видения и автоматический круиз-контроль – эти модные технологии, которые помогают водителю на дороге сегодня.

Антиблокировочная система тормозов (ABS) помогает остановиться быстрее и не потерять управление автомобилем, особенно на скользких поверхностях. В случае экстренной остановки ABS работает по-другому нежели обычные тормоза. С обычными тормозами внезапная остановка часто приводит к блокировке колес, что вызывает занос. Антиблокировочная система тормозов определяет, когда колесо заблокировано и отпускает его, управляя тормозами в 10 раз быстрее, чем это может сделать водитель.При срабатывании ABS раздается характерный звук и ощущается вибрация на педали тормоза. Для эффективного использования ABS следует изменить технику торможения. Не нужно отпускать и снова нажимать педаль тормоза,поскольку это отключает систему ABS. В случае экстренного торможения следует один раз нажать на педаль и аккуратно удерживать её до остановки автомобиля.

Traction Control (TCS) применяется для предотвращения пробуксовывания ведущих колёс, независимо от степени нажатия педали газа и дорожного покрытия. Принцип действия её основан на снижении выходной мощности двигателя при возрастании частоты вращения
ведущих колёс. О частоте вращения каждого колеса компьютер, управляющий этой системой, узнаёт от датчиков, установленных у каждого колеса и от датчика ускорения. Точно такие же датчики применяются в системах ABS и в системах контроля крутящего
момента, поэтому часто эти системы применяются одновременно. По сигналам датчиков, указывающих на то, что ведущие колёса начинают пробуксовывать, компьютер принимает решение о снижении мощности двигателя и оказывает на него действие, аналогичное
уменьшению степени нажатия на педаль газа, причем степень сброса газа тем сильнее, чем выше темпы нарастания пробуксовки.

ESC (electronic stability control) — она же ESP. Задача ESC — сохранить стабильность и управляемость автомобиля в предельных режимах поворота. Отслеживая боковые ускорения автомобиля, вектор поворота, тормозное усилие и индивидуальную скорость вращения колес, система определяет ситуации, угрожающие заносом или опрокидыванием автомобиля, и самостоятельно сбрасывает газ и притормаживает соответствующие колеса. Рисунок наглядно иллюстрирует ситуацию, когда водитель превысил максимальную скорость вхождения в поворот, и начался занос (или снос). Красная линия — это траектория движения машины без ESC. Если её водитель начнёт тормозить, у него есть серьёзный шанс развернуться, а если нет — то улететь с дороги. ESC же выборочно подтормозит нужные колёса так, чтобы автомобиль остался на нужной траектории. ESC– наиболее сложное устройство, которое сотрудничает с антиблокировочной (ABS) и антипробуксовочной (TCS) системами, контролирует тягу и управление дроссельной заслонкой. Система ESС на современном автомобиле почти всегда отключаемая. Это может помочь в нестандартных ситуациях на дороге, например при раскачивании застрявшего автомобиля.

Круиз-контроль — это система, автоматически поддерживающая заданную скорость движения вне зависимости от изменений профиля дороги (подъемы, спуски). Управление работой данной системы (фиксация скорости, ее снижение или увеличение) осуществляется водителем путем нажатия кнопок на подрулевом выключателе или руле после разгона автомобиля до необходимой скорости. При нажатии водителем педали тормоза или газа система моментально отключается.Круиз-контроль значительно уменьшает появление усталости у водителя в длительных поездках, поскольку позволяет ногам человека находиться в расслабленном состоянии. В большинстве случаев круиз-контроль снижает расход топлива, поскольку поддерживается стабильный режим работы двигателя; увеличивается моторесурс двигателя, так как при поддерживаемых системой постоянных оборотах отсутствуют переменные нагрузки на его детали.

Кроме поддержания постоянной скорости движения, одновременно отслеживает соблюдение безопасной дистанции до впереди идущего автомобиля. Основной элемент активного круиз-контроля – ультразвуковой датчик, установленный в переднем бампере или за радиаторной решеткой. Его принцип работы аналогичен датчикам парковочного радара, только радиус действия составляет несколько сотен метров, а угол охвата, наоборот, ограничен несколькими градусами. Посылая ультразвуковой сигнал, датчик ждет ответа. Если луч нашел препятствие в виде автомобиля, движущегося с меньшей скоростью и вернулся – значит, необходимо снизить скорость. Как только дорога вновь освобождается, машина разгоняется до первоначальной скорости.

Еще одним из важных элементов безопасности современного автомобиля являются шины. Подумайте: они единственное, что связывает машину с дорогой. Хороший комплект шин дает большое преимущество в том, как машина реагирует на экстренные маневры. Качество шин также заметно сказывается на управляемости машин.

Рассмотрим для примера оснащение Mercedes S-класса. В базовой комплектации автомобиля есть система Pre-Safe. При угрозе ДТП, которую электроника определяет по резкому торможению или слишком сильному скольжению колес, Pre-Safe подтягивает ремни безопасности и надувает
воздушные камеры в мультиконтурных передних и задних сиденьях, чтобы лучше зафиксировать пассажиров. Помимо этого Pre-Safe «задраивает люки» – закрывает стекла и люк в крыше. Все эти приготовления должны уменьшить тяжесть возможного ДТП. Отличника контраварийной подготовки из S-класса делают всевозможные электронные помощники водителя – система стабилизации ESP, антипробуксовочная система ASR, система помощи при экстренном торможении Brake Assist. Система помощи при экстренном торможении в S-классе совмещена с радаром. Радар определяет
расстояние до едущих впереди машин.

Если оно становится угрожающе коротким, а водитель тормозит слабее необходимого, электроника начинает ему помогать. При экстренном торможении стоп-сигналы автомобиля мигают. По заказу S-класс можно оборудовать системой Distronic Plus. Она представляет собой автоматический круиз-контроль, очень удобный в пробках. Устройство с помощью того же радара контролирует дистанцию до впереди идущего автомобиля, при необходимости останавливает машину, а когда поток возобновляет движение, автоматически разгоняет ее до прежней скорости. Тем самым Mercedes избавляет водителя от каких-либо манипуляций помимо вращения руля. Distronic работает
на скоростях от 0 до 200 км/ч. Парад антиаварийных приспособлений S-класса завершает инфракрасная система ночного видения. Она выхватывает из темноты предметы, спрятавшиеся от мощных ксеноновых фар.

Рейтинг безопасности автомобилей (краш-тесты EuroNCAP)

Главным светочем пассивной безопасности является «Европейская ассоциация испытания новых автомобилей», или сокращенно «EuroNCAP». Основанная в 1995 году, эта организация занимается тем, что регулярно уничтожает новенькие автомобили, выставляя оценки по пятизвездной шкале. Чем больше звездочек, тем лучше. Итак, если, выбирая новый автомобиль, вы в первую очередь заботитесь о безопасности, отдайте предпочтение модели, получившей максимально возможные пять звезд от «EuroNCAP».

Все серии испытаний проходят по одному сценарию. Сначала организаторы отбирают популярные на рынке автомобили одного класса и одного модельного года и анонимно закупают по две машины каждой модели. Испытания проводятся на двух известных независимых исследовательских центрах – английском TRL и голландском TNO. Начиная с первых тестов 1996 года и до середины 2000 года рейтинг безопасности EuroNCAP был «четырехзвездочным» и включал в себя оценку поведения автомобиля в двух видах испытаний – при фронтальном и боковом краш-тестах.

Но летом 2000 года эксперты EuroNCAP ввели еще одно, дополнительное, испытание – имитацию бокового удара о столб. Автомобиль размещают поперечно на подвижной тележке и на скорости 29 км/ч направляют водительской дверью в металлический столб диаметром примерно 25 см. Этот тест проходят только те автомобили, которые оснащены специальными средствами защиты головы водителя и пассажиров – «высокими» боковыми подушками или надувными «занавесками».

Если машина прошла три теста, то вокруг головы манекена на пиктограмме степени безопасности при боковом столкновении появляется ореол в виде звезды. Если ореол зеленый, это означает, что автомобиль успешно прошел третий тест и получил дополнительные баллы, способные переместить его в пятизвездочную категорию. А те машины, у которых в стандартном оснащении нет «высоких» боковых подушек или надувных «занавесок», проходят испытания по обычной программе и не могут претендовать на высшую оценку Euro-NCAP.
Оказалось, что эффективно сработавшие защитные приспособления могут более чем на порядок снизить риск травм головы водителя при боковом ударе о столб. Например, без «высоких» подушек или «занавесок» коэффициент вероятности повреждения головы НIС (Head Injury Criteria) при «столбовом» тесте может достигать 10000! (Пороговой величиной НIС, за которой начинается область смертельно опасных повреждений головы, медики считают 1000.) Зато с применением «высоких» подушек и «занавесок» НIС падает до безопасных величин – 200-300.

Пешеход – самый беззащитный участник дорожного движения. Однако его безопасностью EuroNCAP озаботилось лишь в 2002 году, разработав соответствующую методику оценки автомобилей (зеленые звезды). Изучив статистику, специалисты пришли к выводу, что большинство наездов на пешехода происходит по одному сценарию. Вначале автомобиль бампером бьет по ногам, а затем человек, в зависимости от скорости движения и конструкции автомобиля, ударяется головой либо о капот, либо о ветровое стекло.

Перед проведением теста бампер и переднюю кромку капота расчерчивают на 12 участков, а капот и нижнюю часть лобового стекла делят на 48 частей. Затем последовательно по каждому участку наносят удары имитаторами ног и головы. Сила удара соответствует столкновению с человеком на скорости 40 км/ч. Внутри имитаторов размещены датчики. Обработав их данные, компьютер присваивает каждому размеченному участку определенный цвет. Зеленым обозначаются наиболее безопасные участки, красным – самые опасные, желтым – занимающие промежуточное положение. Затем, по совокупности оценок, выставляется общая «звездная» оценка автомобилю за безопасность пешеходов. Максимально возможный результат – четыре звезды.

За последние годы прослеживается четкая тенденция – все больше новых автомобилей получают «звезды» в пешеходном тесте. Проблемными остаются только крупные вседорожники. Причина – в высокой передней части, из-за чего в случае наезда удар приходится не по ногам, а по туловищу.

И еще одно новшество. Все больше автомобилей оснащаются системами напоминания о непристегнутом ремне безопасности (СНРБ) – за наличие такой системы на водительском месте эксперты EuroNCAP начисляют один дополнительный балл, за оснащение обоих передних мест – два балла.

Американская национальная ассоциация безопасности дорожного движения NHTSA проводит краш–тесты по собственной методике. При фронтальном ударе автомобиль на скорости 50 км/ч врезается в жесткий бетонный барьер. Более суровы и условия бокового удара. Тележка весит почти 1400 кг, а автомобиль движется со скоростью 61 км/ч. Такой тест проводится дважды – производятся удары в переднюю, а затем в заднюю двери. В США профессионально и официально бьет машины еще одна организация – Институт транспортных исследований для страховых компаний IIHS. Но ее методика несущественно отличается от европейской.

Заводские краш-тесты

Даже не специалисту понятно, что описанные выше тесты не охватывают всех возможных видов аварий и, следовательно, не позволяют достаточно полно оценить безопасность автомобиля. Поэтому все крупные автопроизводители проводят собственные, нестандартные, краш–тесты, не жалея при этом ни времени, ни денег. Например, каждая новая модель Мерседес до начала производства проходит 28 испытаний. В среднем на одно испытание уходит около 300 человеко-часов. Некоторая часть тестов проводится виртуально, на компьютере. Но они играют роль вспомогательных, для окончательной доводки автомобилей их разбивают только в «реале».Самые тяжелые последствия наступают в результате лобовых столкновений. Поэтому основная часть заводских испытаний имитирует именно этот вид аварий. При этом автомобиль врезают в деформируемые и жесткие препятствия под разными углами, с разными скоростями и разными величинами перекрытия. Однако и такие тесты не дают всей полноты картины. Производители стали сталкивать автомобили между собой, причем не только «одноклассников», но и машины разных «весовых категорий» и даже легковые с грузовиками. Благодаря результатам таких тестов на всех «фурах» с 2003 года стали обязательными противоподкатные балки.

С выдумкой заводские специалисты по безопасности подходят и к испытания боковыми ударами. Разные углы, скорости, места ударов, равновеликие и разновеликие участники – все, как с фронтальными тестами.

Кабриолеты и крупные вседорожники испытывают еще и на переворот, ведь по статистике число погибших в таких авариях достигает 40%

Часто производители испытывают свои автомобили ударом сзади на небольших скоростях (15-45 км/ч) и перекрытии до 40%. Это позволяет оценить, насколько защищены пассажиры от хлыстовых травм (повреждения шейных позвонков) и насколько защищен бензобак. Фронтальные и боковые удары при скоростях до 15 км/ч помогают определить степень ущерба (т.е. затраты на ремонт) при мелких авариях. Отдельным испытания подвергаются сиденья и ремни безопасности.

А что предпринимают автопроизводители для защиты пешеходов? Бампер изготавливают из более мягкого пластика, а в конструкции капота применяют как можно меньше усилительных элементов. Но главная опасность для жизни человека – подкапотные агрегаты. При наезде голова проминает капот и натыкается именно на них. Здесь идут двумя путями – стараются максимально увеличить свободное пространство под капотом, либо снабжают капот пиропатронами. Датчик, расположенный в бампере, при ударе подает сигнал на механизм, вызывающий срабатывание пиропатрона. Последний, выстреливая, приподнимает капот на 5-6 сантиметров, защищая тем самым голову от удара о жесткие выступы подкапотного пространства.

Куклы для взрослых

Все знают, что для проведения краш – тестов используются манекены. Но далеко не всем известно, что к такому, казалось бы простому и логичному решению пришли не сразу. В начале для испытаний использовались человеческие трупы, животные, а в менее опасных тестах участвовали живые люди – добровольцы.

Пионерами в борьбе за безопасность человека в автомобиле выступили американцы. Именно в США еще в 1949 году был изготовлен первый манекен. По своей «кинематике» он больше походил на большую куклу: его конечности двигались совсем не так, как у человека, а тело было цельным. Только в 1971 году GM создали более-менее «человекоподобный» манекен. А современные «куклы» отличаются от своего предка, примерно как человек от обезьяны.

Сейчас манекены изготавливаются целыми семействами: два варианта «отца» разного роста и веса, более легкая и миниатюрная «супруга» и целый набор «детей» – от полуторагодовалого до десятилетнего возраста. Вес и пропорции тела полностью имитируют человеческое. Металлические «хрящи» и «позвонки» работают как человеческий позвоночник. Гибкие пластины заменяют ребра, а шарниры – суставы, даже ступни ног подвижны. Сверху этот «скелет» обтянут виниловым покрытием, упругость которого соответствует упругости человеческой кожи.

Внутри манекен с ног до головы напичкан датчиками, которые во время испытаний передают данные в блок памяти, расположенный в «грудной клетке». В итоге стоимость манекена составляет – держитесь за стул – свыше 200 тысяч долларов. То есть, в несколько раз дороже подавляющего большинства испытуемых автомобилей! Зато такие «куклы» универсальны. В отличие от предшественников, они годятся для проведения и фронтальных, и боковых тестов, и наезда сзади. Подготовка манекена к проведению испытания требует точной настройки электроники и может занимать несколько недель. Кроме того, непосредственно перед тестом, на различные участки «тела» наносят метки краской, чтобы определить, с какими частями салона происходит контакт во время аварии.

Мы живем в компьютерном мире, а потому специалисты по безопасности активно используют в своей работе виртуальное моделирование. Это позволяет собрать гораздо больше данных и, кроме того, такие манекены практически вечны. Программисты Toyota, например, разработали более десятка моделей, имитирующих людей всех возрастов и антропометрических данных. А на Volvo даже создали цифровую беременную женщину.

Заключение

Каждый год во всем мире в ДТП погибают около 1,2 миллиона человек, а полмиллиона получают травмы и увечья. Стремясь привлечь внимание к этим трагическим цифрам, ООН в 2005 году объявило каждое третье воскресенье ноября Всемирным днем памяти жертв дорожных аварий. Проведение краш – тестов позволяет повысить безопасность автомобилей и снизить тем самым вышеприведенную печальную статистику.

С момента выпуска первого авто прошло больше 100 лет. За это время многое, что изменилось. Главное — сместились приоритеты в сторону безопасности автомобиля. На современных машинах устанавливаются системы, повышающие комфорт поездки, исправляющие ошибки автолюбителей и помогающие справиться с тяжелыми дорожными условиями.

Еще 25-30 лет назад ABS устанавливалась только на элитных автомобилях. Сегодня антиблокировочная система предусмотрена в минимальной комплектации даже на машинах бюджетного класса. Какие же устройства относятся к категории систем активной безопасности? В чем особенности узлов? Как они работают?

Устройства активной безопасности условно разбиваются на два вида:

  • Основные. Главное отличие устройств — полная автоматизация работы. Они включаются без ведома водителя и выполняют задачу по снижению риска попадания в ДТП;
  • Дополнительные. Такие системы включаются и отключаются водителем. Сюда относится парктроник, круиз-контроль и прочие.

ABS (Anti-block Braking System)

Аббревиатура ABS известна даже малоопытным автолюбителям. Это система, отвечающая за тормоза и гарантирующая остановку автомобиля без блокировки колес. Впоследствии именно АБС стала основой для разработки других узлов активной безопасности.

Задача антиблокировочной системы — сохранить управляемость автомобиля при резком нажатии на тормоз и движении по скользкой поверхности. Первые наработки устройство появились в 70-х годах прошлого столетия. Впервые АБС была установлена на авто марки Мерседес-Бенц, но со временем к применению системы перешли остальные производители. Популярность ABS обусловлена способностью сокращать тормозной путь и, как следствие, повышать безопасность движения.

Принцип действия АБС основан на корректировке давления тормозной жидкости в каждом из контуров тормозов. Электронные «мозги» машины собирают информацию датчиков и анализируют ее в режиме онлайн. Как только колесо перестает проворачиваться, информация идет к главному процессору, и АБС действует.

Первое, что происходит — срабатывают клапаны, снижающие уровень давления в нужном контуре. Благодаря этому, блокированное ранее колесо перестает фиксироваться. Как только цель достигнута, клапаны закрываются и поднимают давление в контурах тормозов.

Процесс открытия и закрытия клапанов имеет циклический характер. В среднем устройство срабатывает до 10-12 раз в секунду. Как только нога снимается с педали или машина выезжает на «твердую» поверхность, происходит отключение АБС. Понять, что устройство сработало, несложно — это ощутимо по слегка уловимой пульсации, передаваемой от педали тормоза ноге.

Системы ABS нового образца гарантируют прерывистое торможение и контролируют тормозное усилие для всех осей. Обновленная система получила название EBD (о ней пойдет речь ниже).

Пользу ABS переоценить невозможно. С ее помощью появляется шанс избежать столкновения на скользкой дороге и принять правильное решение при маневре. Но имеются у данной системы активной безопасности и ряд недостатков.

  • При срабатывании ABS водитель как бы «выключается» из процесса — работу берет на себя электроника. Что остается человеку за рулем, так это удерживать педаль нажатой.
  • Даже новые АБС работают с запаздыванием, которое обусловлено необходимостью анализа ситуации и сбора информации с датчиков. Процессор должен опросить контролирующие органы, провести анализ и раздать команды. Все это происходит за доли секунды. В условиях гололедицы этого достаточно, чтобы кинуть машину в занос.
  • ABS требует периодического контроля, что сделать в условиях гаражного ремонта почти невозможно.

EBD (Electronic Brake Force Distribution)

Наряду с АБС устанавливается и другая система активной безопасности, управляющая тормозными усилиями автомобиля. Задача устройства — регулировать уровень давления в каждом из контуров системы, управлять тормозами на задней оси. Это обусловлено тем, что в момент нажатия на тормоз центр тяжести переходит к передней оси, а зад автомобиля разгружен. Чтобы обеспечить контроль над машиной, блокировка передних колес должна происходить раньше, чем задних.

Принцип действия ЕБД почти идентичен с описанной ранее АБС. Разница только в том, что давление тормозной жидкости на задних колесах меньше. Как только колеса сзади блокируются, происходит сброс давления клапанами до минимального значения. Как только начинается вращение колес, происходит закрытие клапанов и рост давления. Стоит также отметить, что ЕБД и АБС работаю в паре, и дополняют друг друга.

ASR (Automatic Slip Regulation)

В процессе эксплуатации часто приходится проезжать неблагоприятные участки дороги. Так, сильная грязь или гололедица не дает колесу «зацепиться» за поверхность и происходит пробуксовка. В такой ситуации в работу вступает антипробуксовочная система, устанавливаемая в большей части на внедорожниках и машинах 4х4.

Автолюбители часто путаются в названиях системы активной безопасности, которые часто отличаются. Но разница только аббревиатурах, а принцип действия неизменен. Основа ASR — антиблокировочная тормозная система. Одновременно с этим АСР способна регулировать тягу силового узла и управлять блокировкой дифференциала.

Как только происходит пробуксовка любого из колес, узел его блокирует и заставляет вращаться другое колесо этой же оси. На скорости, превышающей 80 километров в час регулирование происходит путем изменения угла открытия заслонки дросселя.

Главное отличие ASR от рассмотренных выше узлов — контроль большего числа датчиков — скорости вращения, разницы угловых скоростей и так далее. Что касается управления, то оно происходит по схожему с блокировкой принципу действия.

От модели (марки) машины зависит функциональность антипробусковочной системы и принципы управления. Так, ASR способна управлять углом опережения заслонки дросселя, тягой мотора, углом впрыска горючей смеси, программой переключения скоростей и так далее. Активация происходит при помощи специального тумблера (кнопки).

  • При начале пробуксовки к работе подключаются тормозные накладки. Это приводит к необходимости частой замены узлов (они изнашиваются быстрее). Мастера рекомендуют владельцам автомобилей с ASR тщательней контролировать толщину накладок и вовремя менять изношенные узлы.
  • Система антипробуксовки сложна в обслуживании и наладке, поэтому для помощи стоит обращаться к профессионалам.

ESP (Electronic Stability Program)

Одна из главных задач производителя — обеспечить управляемость даже при сложных дорожных условиях. Именно для этих целей разработана система курсовой стабилизации. У устройства много названий, которое у каждого производителя свое. У одних это система стабилизации, у других — курсовой устойчивости. Но такая разница не должна путать опытного автолюбителя, ведь принцип остается неизменен.

Задача ESP — обеспечить управляемость машины при отклонении транспорта от прямолинейной траектории. Система реально работает, что сделало ее популярной в сотнях стран мира. Более того, ее установка на машинах, выпущенных в США и Европе, стала обязательной. Узел берет на себя задачу стабилизации движения при совершении маневра, резком нажатии на тормоза, разгоне и так далее.

ESP — «мозговой центр», включающий в себя дополнительную электронику, которая уже рассматривалась выше (ЕБД, АБС, АСР и прочую). Контроль автомобиля реализуется на базе работы датчиков — бокового ускорения, поворота вала руля и прочих.

Еще одна функция ESP — способность управлять тягой силового узла и коробкой-автомат. Устройство анализирует ситуацию и самостоятельно определяет, когда она переходит в разряд критической. При этом устройство следит за правильностью действий водителя и текущей траекторией. Как только манипуляции водителя расходятся с требованиями касательно действий в аварийной обстановке, в работу включается ЕСП. Она исправляет ошибки и удерживает машину на дороге.

ESP работает по-разному (здесь все зависит от ситуации). Это может быть изменение оборотов мотора, торможение колес, изменение угла поворота, корректировка жесткости элементов подвески. Тем же подтормаживанием колес система добивается исключения заноса или увода машины к обочине. При повороте машины по дуге происходит торможение заднего колеса, расположенного ближе к центру дороги. Одновременно с этим меняются и обороты силового узла. Комплексное действие ESP удерживает машину на дороге и дает уверенности водителю.

В процессе работы ESP подключает и другие системы — предотвращения столкновения, управления экстренным торможением, блокировки дифференциала и так далее. Главная опасность ESP — создание у водителей ложного чувства безнаказанности за ошибки. Но халатное отношение к дороге и полное возложение надежд на современные системы до добра не доводит. Какой бы современной ни была система, она не способна управлять — это делает человек за рулем. Система ESP способна убрать огрехи.

Brake Assistant

Устройство экстренного торможения — узел, обеспечивающий безопасность движения. Работает устройство по следующему алгоритму:

  • Датчики контролируют ситуацию и распознают преграду. При этом анализируется текущая скорость движения.
  • Водитель получает сигнал опасности.
  • При бездействии со стороны водителя система сам дает команду на торможение.

В процессе работы ЕСП контролирует и задействует ряд механизмов. В частности, контролируется сила давления на педаль тормоза, обороты двигателя и прочие аспекты.

К вспомогательным системам активной безопасности стоит отнести:

  • Перехват рулевого управления
  • Круиз-контроль — опция, позволяющая поддерживать фиксированную скорость
  • Распознавание животных
  • Помощь во время подъема или спуска
  • Распознавание на дороге велосипедистов или пешеходов
  • Распознавание усталости водителя и так далее.

Системы активной безопасности автомобиля созданы для помощи водителю на дороге. Но не стоит слепо доверять автоматике. Важно помнить, что 95% успеха зависит от навыков автомобилиста. Только 5% «доделывает» автоматика.

Системы безопасности являются центральным направлением развития современных автомобилей. Серьезный эволюционный этап в данном направлении начался с момента появления первых интеллектуальных устройств, которые предотвращали или снижали риски аварии. Сегодня подобные системы образуют целый пласт средств, которые носят название активной безопасности автомобиля. Это преимущественно электронные устройства, которые могут отслеживать определенные параметры состояния машины, своевременно подавая сигналы о возможных угрозах.

Понятие систем активной безопасности

Вам будет интересно:

Для понимания того, что собой представляют такие системы, необходимо для начала рассмотреть принцип действия механизмов, которые являются их противоположностью. То есть речь пойдет о системах пассивной безопасности. Как уже было отмечено, это механические устройства, причем традиционно никак не связанные с электронными средствами управления. Они срабатывают в моменты, когда физически фиксируется внешнее воздействие. Что же касается активной безопасности автомобиля, это комплекс устройств, которые ориентируются на предотвращение ДТП, а также минимизацию рисков, приводящих к другим негативным последствиям. Это могут быть не только электронные приборы с датчиками, но и конструкционные части машины. Более того, на эффективность таких систем влияют и рабочие характеристики автомобиля, которые напрямую никак не связаны с задачами обеспечения безопасности.

Я думаю, что ни у кого не возникнут сомнения в том, что автомобиль представляет большую опасность для окружающих и участников движения. А поскольку полностью избежать дорожно-транспортных проишествий пока не представляется возможным, автомобиль совершенствуется в направлении снижения вероятности аварии и минимизации ее последстий. Этому способствуют ужесточения требований к безопасности автомобиля со стороны организаций, занимающихся анализом и практическими опытами (краш-тесты). И такие меропиятия дают свои положительные «плоды». С каждым годом автомобиль становиться безопасней — как и для тех, кто находиться внутри его, так и для пешеходов. Чтобы понять составляющие понятия «безопасность автомобиля», сначала разделим его на две части — АКТИВНУЮ и ПАССИВНУЮ безопасность.

АКТИВНАЯ БЕЗОПАСНОСТЬ

Что же такое АКТИВНАЯ БЕЗОПАСНОСТЬ АВТОМОБИЛЯ?
Говоря научным языком — это совокупность конструктивных и эксплуатационных свойств автомобиля, направленных на предотвращение дорожно-транспортных происшествий и исключение предпосылок их возникновения, связанных с конструктивными особенностями автомобиля.
А если говорить проще, то это те системы автомобиля, которые помогают в предотвращении аварии.
Ниже — подробнее о параметрах и системах автомобиля, влияющие на его активную безопасность.

1. БЕЗОТКАЗНОСТЬ

Безотказность узлов, агрегатов и систем автомобиля является определяющим фактором активной беззопасности. Особенно высокие требования предъявляются к надежности элементов, связанных с осуществлением маневра — тормозной системе, рулевому управлению, подвеске, двигателю, трансмиссии и так далее. Повышение безотказности достигается совершенствованием конструкции, применением новых технологий и материалов.

2. КОМПОНОВКА АВТОМОБИЛЯ

Компоновка автомобилей бывает трех видов:
а) Переднемоторная — компоновка автомобиля, при которой двигатель расположен перед пассажирским салоном. Является самым распространенной и имеет два варианта: заднеприводную (класическую) и переднеприводную . Последний вид компановки — переднемоторная переднеприводная — получил в настоящее время широкое распространение благодаря ряду преимуществ перед приводом на задние колеса:
— лучшая устойчивость и управляемость при движении на большой скорости, особенно по мокрой и скользкой дороге;
— обеспечение неоходимой весовой нагрузки на ведущие колеса;
— меньшему уровню шума, чему способствует отсутствие карданного вала.
В тоже время переднеприводные автомобили обладают и рядом недостатков:
— при полной нагрузке уходшается разгон на подъеме и мокрой дороге;
— в момент торможения слишком неравномерное распределение веса между осями (на колеса передней оси приходится 70%-75% веса автомобиля) и соответственно тормозных сил (см. Тормозные свойства);
— шины передних ведущих управляемых колес нагружены больше соответственно больше подвержены износу;
— привод на предние колеса требует применение сложных узков — шарниров равных угловых скоростей (ШРУСов)
— объединение силового агрегата (двигатель и КПП) с главной передачей усложняет доступ к отдельным элементам.

б) Компоновка с центральным расположением двигателя — двигатель находится между передней и задней осями, для легковых автомобилей является достаточно редкой. Она позволяет получить наиболее вместительный салон при заданных габаритах и хорошее распределение по осям.

в) Заднемоторная — двигатель расположен за пассажирским салоном. Такая компоновка была распространена на малолитражных автомобилях. При передаче крутящего момента на задние колеса она позволяла получить недорогой силовой агрегат и распределение такой нагрузки по осям, при которой на задние колеса приходилось около 60% веса. Это положительно сказывалось на проходимости автомобиля, но отрицательно на его устойчивости и управляемости, особенно на больших скоростях. Автомобили с этой компоновкой, в настоящее время, практически не выпускаются.

3. ТОРМОЗНЫЕ СВОЙСТВА

Возможность предотвращения ДТП чаще всего связана с интенсивным торможением, поэтому необходимо, чтобы тормозные свойства автомобиля обеспечивали его эффективное замедление в любых дорожных ситуациях.
Для выполненния этого условия сила, развиваемая тормозным механизмом, не должна превышать силы сцепления с дорогой, зависящей от весовой нагрузки на колесо и состояния дорожного покрытия. Иначе колесо заблокируется (перестанет вращаться) и начнет скользить, что может привести (особенно при блокировке нескольких колес) к заносу автомобиля и значительном увеличении тормозного пути. Чтобы предотвратить блокировку, силы, развиваемые тормозными механизмами, должны быть пропорциональны весовой нагрузки на колесо. Реализуется это с помощью применения более эффективных дисковых тормозов.
На современных автомобилях используется антиблокировочная система (АБС), корректирующая силу торможения каждого колеса и предотвращающая их скольжение.
Зимой и летом состояние дорожного покрытия разное, поэтому для наилучшей реализации тормозных свойств необходимо применять шины, соответствующие сезону.

4. ТЯГОВЫЕ СВОЙСТВА

Тяговые свойства (тяговая динамика) автомобиля определяют его способность интенсивно увеличевать скорость движения. От этих свойств во многом зависит увереность водитель при обгоне, проезде пререкрестов. Особенно важное значение тяговая динамика имеет для выхода из аварийных ситуаций, когда тормозить уже поздно, маневрировать не позволяют сложные условия, а избежать ДТП можно, только опередив события.
Так же как и в случае с тормозными силами, сила тяги на колесе не должна быть больше силы сцепления с дорогой, в противном случае оно начнет пробуксовывать. Предотвращает это противобуксовочная система (ПБС). При разгоне автомобиля она притормаживает колесо, скорость вращения которого больше, чем у остальных, а при необходимости уменьшает мощность, развиваемую двигателем.

5. УСТОЙЧИВОСТЬ АВТОМОБИЛЯ

Устойчивость — способность автомобиля сохранять движение по заданной траектории, противодействуя силам, вызывоющих его занос и опрокидывание в различных дорожных условиях при высоких скоростях.
Различают следующие виды устойчивости:
поперечная при прямолинейном движении (курсовая устойчивость).
Ее нарушение проявляется в рыскании (изменении направления движения) автомобиля по дороге и может быть вызвано действием боковой силы ветра, разными величинами тяговых или тормозных сил на колесах левого или правого борта, их буксованием или скольжением. большим люфтом в рулевом управлении, неправильными углами установки колес и т.д.;
поперечная при криволинейном движении.
Ее нарушение приводит к заносу или опрокидовании под действием центробежной силы. Особенно ухудшает устойчивость повышение положения центра масс автомобиля (например, большая масса груза на съемном багажнике на крыше);
продольная .
Ее нарушение проявляется в буксовании ведущих колес при преодолении затяжных обледенелых или заснеженных подъемов и сползании автомобиля назад. Особенно это характерно для автопоездов.

6. УПРАВЛЯЕМОСТЬ АВТОМОБИЛЯ

Управляемость — способность автомобиля двигаться в направлении, заданном водителем.
Одной из характеристик управляемости является поворачиваемость — свойство автомобиля изменять направление движения при неподвижном рулевом колесе. В зависимости от изменения радиуса поворота под воздействием боковых сил (центробежной силы на повороте, силы ветра и т.д.) поворачиваемость может быть:
недостаточной — автомобиль увеличивает радиус поворота;
нейтральной — радиус поворота не изменяется;
избыточной — радиус поворота уменьшается.

Различают шинную и креновую поворачиваемость.

Шинная поворачиваемость

Шинная поворачиваемость связана со свойством шин двигаться под углом к заданному направлению при боковом уводе (смещение пятна контакта с дорогой относительно плоскости вращения колеса). При установке шин другой модели поворачиваемость может измениться и автомобиль на поворотах при движении с большой скоростью поведет себя иначе. Кроме того, величина бокового увода зависит от давления в шинах, которое должно соответствовать указанному в инструкции по эксплуатации автомобиля.

Креновая поворачиваемость

Креновая поворачиваемость связана с тем, что при наклоне кузова (крене) колеса изменяют свое положение относительно дороги и автомобиля (в зависимости от типа подвески). Например, если подвеска двухрычажная, колеса наклоняются в стороны крена, увеличивая увод.

7. ИНФОРМАТИВНОСТЬ

Информативность — свойство автомобиля обеспечивать необходимой информацией водителя и остальных участников движения. Недостаточная информация от других транспортных средст, находящихся на дороге, о состояния дорожного покрытия и т.д. часто становится причиной аварии. Информативность автомобиля подразделяют на внутреннюю, внешнюю и дополнительную.

Внутренняя обеспечивает возможность водителю воспренимать информацию, необходимую для управления автомобилем.
Она зависит от следующих факторов:
Обзорность должна позволять водителю своевременно и без помех получать всю необходимую информацию о дорожной обстановке. Неисправные или неэффективно работающие омыватели, система обдува и обогрева стекол, стеклоочистители, отсутствие штатных зеркал заднего вида резко ухудшают обзорность при определенных дорожных условиях.
Раположение панели приборов , кнопок и клавиш управления, рычага переключения скоростей и т.д. должно обеспечивать водителю минимальное время для контроляпоказаний, воздействий на переключатели и т.д.

Внешняя информативность — обеспечение других участников движения информацией от автомобиля, которая необходима для правильного взаимодействия с ними. В нее входят система внешней световой сигнализации, звуковой сигнал, размеры, форма и окраска кузова. Информативность легковых автомобилей зависит от контрастности их цвета относительно дорожного покрытия. По статистике автомобили, окрашенные в черный, зеленый, серый и синий цвета, в два раза чаще попадают в аварии из-за трудности их различения в условиях недостаточной видимости и ночью. Неисправные указатели поворотов, стоп-сигналы, габаритные огни не позволят другим участникам дорожного движения вовремя распознать намерения водителя и принять правильное решение.

Дополнительная информативность — свойство автомобиля, позволяющие эксплуатировать его в условиях ограниченной видимости: ночью, в тумане и т.д. Она зависит от характеристик приборов системы освещения и других устройств (например, противотуманных фар), улучшающих восприятие водителем информации о дорожно-транспортной ситуации.

8. КОМФОРТАБЕЛЬНОСТЬ

Комфортабельность автомобиля определяет время, в течение которого водитель способен управлять автомобилем без утомления. Увеличению комфорта способствует использование АККП, регуляторов скорости (круиз-контроль) и т.д. В настоящее время выпускаются автомобили, оборудованные адаптивным круиз-контролем. Он не только автоматически поддерживает скорость на заданном уровне, но и при необходимости снижает ее вплоть до полной остановки автомобиля.

ПАССИВНАЯ БЕЗОПАСНОСТЬ

Пассивная безопасность автомобиля должна обеспечивать выживание и сведение к минимуму количества травм у пассажиров автомобиля, попавшего в дорожно-транспортное происшествие.
В последние годы пассивная безопасность автомобилей превратилась в один из наиважнейших элементов с точки зрения производителей. В изучение данной темы и её развитие инвестируются огромные средства, и не только по причине того, что фирмы заботятся о здоровье клиентов, а потому, что безопасность является рычагом продажи. А фирмы любят продавать.
Попробую объяснить несколько определений, скрывающихся под широким определением «пассивной безопасности».
Она подразделяется на внешнюю и внутренюю.

Внешняя достигается исключением на внешней поверхности кузова острых углов, выступающих ручек и т.д. С этим все понятно и достаточно просто.
Для повышения уровня внутренней безопасности используют очень много разных конструктивные решения:

1. КОНСТРУКЦИЯ КУЗОВА или «РЕШЁТКА БЕЗОПАСНОСТИ»

Она обеспечивает приемлемые нагрузки на тело человека от резкого замедления при ДТП и сохраняет пространство пассажирского салона после деформации кузова.
При тяжёлой аварии есть опасность, что двигатель и другие агрегаты могут проникнуть в кабину водителя. Поэтому, кабина окружена особой «решёткой безопасности», представляющей собой абсолютную защиту в подобных случаях. Такие же рёбра и брусья жесткости можно найти и в дверях автомобиля (на случай боковых столкновений).
Сюда же относятся и области погашения энергии .
При тяжёлой аварии происходит резкое и неожиданное замедление до полной остановки автомобиля. Этот процесс вызывает огромные перегрузки на тела пассажиров, могущие оказаться фатальными. Из этого следует, что необходимо найти способ «замедлить» замедление для того, чтобы уменьшить нагрузки на тело человека. Одним из способов решения данной задачи является проектирование областей разрушения, гасящих энергию столкновения, в передней и задней части кузова. Разрушения автомобиля будут более тяжёлыми, зато пассажиры останутся целыми (и это по сравнению со старыми «толстокожими» машинами, когда машина отделывалась «лёгким испугом», зато пассажиры получали тяжёлые травмы).

2. РЕМНИ БЕЗОПАСНОСТИ

Система ремней, так хорошо нам знакомая, несомненно является наиболее действенным способом защиты человека во время аварии. После долгих лет, в течение которых система оставалась неизменной, в последние годы произошли существенные изменения, повысившие степень безопaсности пассажиров. Так, система предварительного натяжения ремней (belt pretensioner) в случае аварии притягивает корпус человека к спинке сидения, тем самым предотвращая продвижение корпуса вперёд, либо проскальзывание под ремнём. Действенность системы обуславливается тем, что ремень находится в натянутом положении, а не ослаблен применением различных клипсов и прищепок, которые практически аннулируют действие преднатяжителя. Дополнительным элементом ремней безопасности с преднатяжителем является система ограничения максимальной нагрузки на тело. При его срабатывании ремень слегка ослабнет, тем самым уменьшив нагрузку на тело.

3. НАДУВНЫЕ ПОДУШКИ БЕЗОПАСНОСТИ (airbag)

Одной из распространённых и действенных систем безопасности в современных автомобилях (после ремней безопасности) являются воздушные подушки. Они начали широко использоваться уже в конце 70-х годов, но лишь десятилетие спустя они действительно заняли достойное место в системах безопасности автомобилей большинства изготовителей.
Они размещаются не только перед водителем, но и перед передним пассажиром, а также с боков (в дверях, стойках кузова и т.д.). Некоторые модели автомобилей имеют их принудительное отключение из-за того, что люди с больным сердцем и дети могут не выдержать их ложного срабатывания.

4. СИДЕНИЯ С ПОДГОЛОВНИКАМИ

Я думаю, что ни у кого не возникнут сомнения Роль подголовника – предотвратить резкое движение головы во время аварии. Поэтому следует отрегулировать высоту подголовника и его позицию в провильное положение. Современные подголовники имеют две степени регулировки, позволяющие предотвратить травмы шейных позвонков при движении «взахлест», столь характерных при наездах сзади.

5. БЕЗОПАСНОСТЬ ДЕТЕЙ

Сегодня уже нет необходимости ломать голову над подгонкой детского сиденья под оригинальные ремни безопасности. Всё более распространённое приспособление Isofix позволяет присоединить сиденье безопасности для ребёнка прямо к точкам соединения, заранее подготовленными в машине, не используя ремни безопасности. Необходимо лишь проверить, что автомобиль и детское сиденье приспособлены к креплениям Isofix .

Системы активной и пассивной безопасности легковых автомобилей. Пассивная безопасность автомобиля — реферат

Я думаю, что ни у кого не возникнут сомнения в том, что автомобиль представляет большую опасность для окружающих и участников движения. А поскольку полностью избежать дорожно-транспортных проишествий пока не представляется возможным, автомобиль совершенствуется в направлении снижения вероятности аварии и минимизации ее последстий. Этому способствуют ужесточения требований к безопасности автомобиля со стороны организаций, занимающихся анализом и практическими опытами (краш-тесты). И такие меропиятия дают свои положительные «плоды». С каждым годом автомобиль становиться безопасней — как и для тех, кто находиться внутри его, так и для пешеходов. Чтобы понять составляющие понятия «безопасность автомобиля», сначала разделим его на две части — АКТИВНУЮ и ПАССИВНУЮ безопасность.

АКТИВНАЯ БЕЗОПАСНОСТЬ

Что же такое АКТИВНАЯ БЕЗОПАСНОСТЬ АВТОМОБИЛЯ?
Говоря научным языком — это совокупность конструктивных и эксплуатационных свойств автомобиля, направленных на предотвращение дорожно-транспортных происшествий и исключение предпосылок их возникновения, связанных с конструктивными особенностями автомобиля.
А если говорить проще, то это те системы автомобиля, которые помогают в предотвращении аварии.
Ниже — подробнее о параметрах и системах автомобиля, влияющие на его активную безопасность.

1. БЕЗОТКАЗНОСТЬ

Безотказность узлов, агрегатов и систем автомобиля является определяющим фактором активной беззопасности. Особенно высокие требования предъявляются к надежности элементов, связанных с осуществлением маневра — тормозной системе, рулевому управлению, подвеске, двигателю, трансмиссии и так далее. Повышение безотказности достигается совершенствованием конструкции, применением новых технологий и материалов.

2. КОМПОНОВКА АВТОМОБИЛЯ

Компоновка автомобилей бывает трех видов:
а) Переднемоторная — компоновка автомобиля, при которой двигатель расположен перед пассажирским салоном. Является самым распространенной и имеет два варианта: заднеприводную (класическую) и переднеприводную . Последний вид компановки — переднемоторная переднеприводная — получил в настоящее время широкое распространение благодаря ряду преимуществ перед приводом на задние колеса:
— лучшая устойчивость и управляемость при движении на большой скорости, особенно по мокрой и скользкой дороге;
— обеспечение неоходимой весовой нагрузки на ведущие колеса;
— меньшему уровню шума, чему способствует отсутствие карданного вала.
В тоже время переднеприводные автомобили обладают и рядом недостатков:
— при полной нагрузке уходшается разгон на подъеме и мокрой дороге;
— в момент торможения слишком неравномерное распределение веса между осями (на колеса передней оси приходится 70%-75% веса автомобиля) и соответственно тормозных сил (см. Тормозные свойства);
— шины передних ведущих управляемых колес нагружены больше соответственно больше подвержены износу;
— привод на предние колеса требует применение сложных узков — шарниров равных угловых скоростей (ШРУСов)
— объединение силового агрегата (двигатель и КПП) с главной передачей усложняет доступ к отдельным элементам.

б) Компоновка с центральным расположением двигателя — двигатель находится между передней и задней осями, для легковых автомобилей является достаточно редкой. Она позволяет получить наиболее вместительный салон при заданных габаритах и хорошее распределение по осям.

в) Заднемоторная — двигатель расположен за пассажирским салоном. Такая компоновка была распространена на малолитражных автомобилях. При передаче крутящего момента на задние колеса она позволяла получить недорогой силовой агрегат и распределение такой нагрузки по осям, при которой на задние колеса приходилось около 60% веса. Это положительно сказывалось на проходимости автомобиля, но отрицательно на его устойчивости и управляемости, особенно на больших скоростях. Автомобили с этой компоновкой, в настоящее время, практически не выпускаются.

3. ТОРМОЗНЫЕ СВОЙСТВА

Возможность предотвращения ДТП чаще всего связана с интенсивным торможением, поэтому необходимо, чтобы тормозные свойства автомобиля обеспечивали его эффективное замедление в любых дорожных ситуациях.
Для выполненния этого условия сила, развиваемая тормозным механизмом, не должна превышать силы сцепления с дорогой, зависящей от весовой нагрузки на колесо и состояния дорожного покрытия. Иначе колесо заблокируется (перестанет вращаться) и начнет скользить, что может привести (особенно при блокировке нескольких колес) к заносу автомобиля и значительном увеличении тормозного пути. Чтобы предотвратить блокировку, силы, развиваемые тормозными механизмами, должны быть пропорциональны весовой нагрузки на колесо. Реализуется это с помощью применения более эффективных дисковых тормозов.
На современных автомобилях используется антиблокировочная система (АБС), корректирующая силу торможения каждого колеса и предотвращающая их скольжение.
Зимой и летом состояние дорожного покрытия разное, поэтому для наилучшей реализации тормозных свойств необходимо применять шины, соответствующие сезону.

4. ТЯГОВЫЕ СВОЙСТВА

Тяговые свойства (тяговая динамика) автомобиля определяют его способность интенсивно увеличевать скорость движения. От этих свойств во многом зависит увереность водитель при обгоне, проезде пререкрестов. Особенно важное значение тяговая динамика имеет для выхода из аварийных ситуаций, когда тормозить уже поздно, маневрировать не позволяют сложные условия, а избежать ДТП можно, только опередив события.
Так же как и в случае с тормозными силами, сила тяги на колесе не должна быть больше силы сцепления с дорогой, в противном случае оно начнет пробуксовывать. Предотвращает это противобуксовочная система (ПБС). При разгоне автомобиля она притормаживает колесо, скорость вращения которого больше, чем у остальных, а при необходимости уменьшает мощность, развиваемую двигателем.

5. УСТОЙЧИВОСТЬ АВТОМОБИЛЯ

Устойчивость — способность автомобиля сохранять движение по заданной траектории, противодействуя силам, вызывоющих его занос и опрокидывание в различных дорожных условиях при высоких скоростях.
Различают следующие виды устойчивости:
поперечная при прямолинейном движении (курсовая устойчивость).
Ее нарушение проявляется в рыскании (изменении направления движения) автомобиля по дороге и может быть вызвано действием боковой силы ветра, разными величинами тяговых или тормозных сил на колесах левого или правого борта, их буксованием или скольжением. большим люфтом в рулевом управлении, неправильными углами установки колес и т.д.;
поперечная при криволинейном движении.
Ее нарушение приводит к заносу или опрокидовании под действием центробежной силы. Особенно ухудшает устойчивость повышение положения центра масс автомобиля (например, большая масса груза на съемном багажнике на крыше);
продольная .
Ее нарушение проявляется в буксовании ведущих колес при преодолении затяжных обледенелых или заснеженных подъемов и сползании автомобиля назад. Особенно это характерно для автопоездов.

6. УПРАВЛЯЕМОСТЬ АВТОМОБИЛЯ

Управляемость — способность автомобиля двигаться в направлении, заданном водителем.
Одной из характеристик управляемости является поворачиваемость — свойство автомобиля изменять направление движения при неподвижном рулевом колесе. В зависимости от изменения радиуса поворота под воздействием боковых сил (центробежной силы на повороте, силы ветра и т.д.) поворачиваемость может быть:
недостаточной — автомобиль увеличивает радиус поворота;
нейтральной — радиус поворота не изменяется;
избыточной — радиус поворота уменьшается.

Различают шинную и креновую поворачиваемость.

Шинная поворачиваемость

Шинная поворачиваемость связана со свойством шин двигаться под углом к заданному направлению при боковом уводе (смещение пятна контакта с дорогой относительно плоскости вращения колеса). При установке шин другой модели поворачиваемость может измениться и автомобиль на поворотах при движении с большой скоростью поведет себя иначе. Кроме того, величина бокового увода зависит от давления в шинах, которое должно соответствовать указанному в инструкции по эксплуатации автомобиля.

Креновая поворачиваемость

Креновая поворачиваемость связана с тем, что при наклоне кузова (крене) колеса изменяют свое положение относительно дороги и автомобиля (в зависимости от типа подвески). Например, если подвеска двухрычажная, колеса наклоняются в стороны крена, увеличивая увод.

7. ИНФОРМАТИВНОСТЬ

Информативность — свойство автомобиля обеспечивать необходимой информацией водителя и остальных участников движения. Недостаточная информация от других транспортных средст, находящихся на дороге, о состояния дорожного покрытия и т.д. часто становится причиной аварии. Информативность автомобиля подразделяют на внутреннюю, внешнюю и дополнительную.

Внутренняя обеспечивает возможность водителю воспренимать информацию, необходимую для управления автомобилем.
Она зависит от следующих факторов:
Обзорность должна позволять водителю своевременно и без помех получать всю необходимую информацию о дорожной обстановке. Неисправные или неэффективно работающие омыватели, система обдува и обогрева стекол, стеклоочистители, отсутствие штатных зеркал заднего вида резко ухудшают обзорность при определенных дорожных условиях.
Раположение панели приборов , кнопок и клавиш управления, рычага переключения скоростей и т.д. должно обеспечивать водителю минимальное время для контроляпоказаний, воздействий на переключатели и т.д.

Внешняя информативность — обеспечение других участников движения информацией от автомобиля, которая необходима для правильного взаимодействия с ними. В нее входят система внешней световой сигнализации, звуковой сигнал, размеры, форма и окраска кузова. Информативность легковых автомобилей зависит от контрастности их цвета относительно дорожного покрытия. По статистике автомобили, окрашенные в черный, зеленый, серый и синий цвета, в два раза чаще попадают в аварии из-за трудности их различения в условиях недостаточной видимости и ночью. Неисправные указатели поворотов, стоп-сигналы, габаритные огни не позволят другим участникам дорожного движения вовремя распознать намерения водителя и принять правильное решение.

Дополнительная информативность — свойство автомобиля, позволяющие эксплуатировать его в условиях ограниченной видимости: ночью, в тумане и т.д. Она зависит от характеристик приборов системы освещения и других устройств (например, противотуманных фар), улучшающих восприятие водителем информации о дорожно-транспортной ситуации.

8. КОМФОРТАБЕЛЬНОСТЬ

Комфортабельность автомобиля определяет время, в течение которого водитель способен управлять автомобилем без утомления. Увеличению комфорта способствует использование АККП, регуляторов скорости (круиз-контроль) и т.д. В настоящее время выпускаются автомобили, оборудованные адаптивным круиз-контролем. Он не только автоматически поддерживает скорость на заданном уровне, но и при необходимости снижает ее вплоть до полной остановки автомобиля.

ПАССИВНАЯ БЕЗОПАСНОСТЬ

Пассивная безопасность автомобиля должна обеспечивать выживание и сведение к минимуму количества травм у пассажиров автомобиля, попавшего в дорожно-транспортное происшествие.
В последние годы пассивная безопасность автомобилей превратилась в один из наиважнейших элементов с точки зрения производителей. В изучение данной темы и её развитие инвестируются огромные средства, и не только по причине того, что фирмы заботятся о здоровье клиентов, а потому, что безопасность является рычагом продажи. А фирмы любят продавать.
Попробую объяснить несколько определений, скрывающихся под широким определением «пассивной безопасности».
Она подразделяется на внешнюю и внутренюю.

Внешняя достигается исключением на внешней поверхности кузова острых углов, выступающих ручек и т.д. С этим все понятно и достаточно просто.
Для повышения уровня внутренней безопасности используют очень много разных конструктивные решения:

1. КОНСТРУКЦИЯ КУЗОВА или «РЕШЁТКА БЕЗОПАСНОСТИ»

Она обеспечивает приемлемые нагрузки на тело человека от резкого замедления при ДТП и сохраняет пространство пассажирского салона после деформации кузова.
При тяжёлой аварии есть опасность, что двигатель и другие агрегаты могут проникнуть в кабину водителя. Поэтому, кабина окружена особой «решёткой безопасности», представляющей собой абсолютную защиту в подобных случаях. Такие же рёбра и брусья жесткости можно найти и в дверях автомобиля (на случай боковых столкновений).
Сюда же относятся и области погашения энергии .
При тяжёлой аварии происходит резкое и неожиданное замедление до полной остановки автомобиля. Этот процесс вызывает огромные перегрузки на тела пассажиров, могущие оказаться фатальными. Из этого следует, что необходимо найти способ «замедлить» замедление для того, чтобы уменьшить нагрузки на тело человека. Одним из способов решения данной задачи является проектирование областей разрушения, гасящих энергию столкновения, в передней и задней части кузова. Разрушения автомобиля будут более тяжёлыми, зато пассажиры останутся целыми (и это по сравнению со старыми «толстокожими» машинами, когда машина отделывалась «лёгким испугом», зато пассажиры получали тяжёлые травмы).

2. РЕМНИ БЕЗОПАСНОСТИ

Система ремней, так хорошо нам знакомая, несомненно является наиболее действенным способом защиты человека во время аварии. После долгих лет, в течение которых система оставалась неизменной, в последние годы произошли существенные изменения, повысившие степень безопaсности пассажиров. Так, система предварительного натяжения ремней (belt pretensioner) в случае аварии притягивает корпус человека к спинке сидения, тем самым предотвращая продвижение корпуса вперёд, либо проскальзывание под ремнём. Действенность системы обуславливается тем, что ремень находится в натянутом положении, а не ослаблен применением различных клипсов и прищепок, которые практически аннулируют действие преднатяжителя. Дополнительным элементом ремней безопасности с преднатяжителем является система ограничения максимальной нагрузки на тело. При его срабатывании ремень слегка ослабнет, тем самым уменьшив нагрузку на тело.

3. НАДУВНЫЕ ПОДУШКИ БЕЗОПАСНОСТИ (airbag)

Одной из распространённых и действенных систем безопасности в современных автомобилях (после ремней безопасности) являются воздушные подушки. Они начали широко использоваться уже в конце 70-х годов, но лишь десятилетие спустя они действительно заняли достойное место в системах безопасности автомобилей большинства изготовителей.
Они размещаются не только перед водителем, но и перед передним пассажиром, а также с боков (в дверях, стойках кузова и т.д.). Некоторые модели автомобилей имеют их принудительное отключение из-за того, что люди с больным сердцем и дети могут не выдержать их ложного срабатывания.

4. СИДЕНИЯ С ПОДГОЛОВНИКАМИ

Я думаю, что ни у кого не возникнут сомнения Роль подголовника – предотвратить резкое движение головы во время аварии. Поэтому следует отрегулировать высоту подголовника и его позицию в провильное положение. Современные подголовники имеют две степени регулировки, позволяющие предотвратить травмы шейных позвонков при движении «взахлест», столь характерных при наездах сзади.

5. БЕЗОПАСНОСТЬ ДЕТЕЙ

Сегодня уже нет необходимости ломать голову над подгонкой детского сиденья под оригинальные ремни безопасности. Всё более распространённое приспособление Isofix позволяет присоединить сиденье безопасности для ребёнка прямо к точкам соединения, заранее подготовленными в машине, не используя ремни безопасности. Необходимо лишь проверить, что автомобиль и детское сиденье приспособлены к креплениям Isofix .

Согласно статистике, порядка 80–85% всех дорожно-транспортных происшествий приходятся на долю автомобилей. Именно поэтому автопроизводители, при разработке конструкции авто, уделяют максимум внимания его безопасности – ведь от безопасности отдельно взятого автомобиля напрямую зависит и общая безопасность движения на дорогах. Необходимо предусматривать весь спектр потенциально опасных ситуаций, в которые теоретически может попасть автомобиль, а зависят они от множества различных факторов.

Современные предусматривают как активную, так и пассивную безопасность автомобиля и включают в себя целый ряд устройств: подушки безопасности автомобиля, антиблокировочную систему колес (АБС), противобуксовочные и противозаносные системы и многие другие средства. Надежность конструкции автомобиля поможет водителю не попасть в беду и обезопасить свою жизнь и жизнь пассажиров в непростых условиях современных дорог.

Активная и пассивная безопасность автомобиля

В целом безопасность транспортного средства подразделяют на активную и пассивную. Что же обозначают эти термины? Активная безопасность включает в себя все те свойства конструкции авто, при помощи которых предотвращается и/или снижается сама . Благодаря таким свойствам, водитель может менять – другими словами, автомобиль не станет неуправляемым в экстренной ситуации.

Рациональная конструкция машины является залогом ее активной безопасности. Здесь большую роль играют так называемые «анатомические» сидения, повторяющие форму человеческого тела, обогрев ветрового стекла и зеркал заднего вида во избежание их замерзания, стеклоочистители на фарах, противосолнечные козырьки. Кроме того, активной безопасности способствуют различные современные системы – противоблокировочные, контролирующие скорость движения авто в целом и работу его отдельных механизмов, сигнализирующие о неисправностях и т.д.

Кстати, цвет кузова также имеет большое значение для активной безопасности авто. Наиболее безопасными в этом плане считаются оттенки теплого спектра – желтый, оранжевый, красный – а также белый цвет кузова.

Повышение заметности автомобиля в ночное время достигается и другими способами – например, на номерные знаки и бампер наносится специальная световозвращающая краска. Также в целях повышения активной безопасности необходимо хорошо продуманное расположение приборов на приборной панели и качественный обзор с водительского места. Следует помнить, что, согласно дорожной статистике, при авариях чаще всего повреждается рулевое управление, двери, ветровое стекло и приборная панель.

В случае если авария все-таки происходит, ведущая роль в ситуации переходит к приемам пассивной безопасности.

В понятие пассивной безопасности входят такие свойства конструкции транспортного средства, которые помогают уменьшить степень тяжести ДТП, если таковое случится. Пассивная безопасность проявляет себя, когда водитель все же не в силах изменить характер движения машины для предотвращения аварии, несмотря на принятые меры активной безопасности.

Зависит пассивная безопасность, как и активная, от множества нюансов конструкции. Сюда можно отнести, например, устройство бампера, наличие дуг, ремней и подушек безопасности, уровень жесткости кабины и прочие условия.

Передняя и задняя части транспортного средства, как правило, менее прочны, чем средняя – это также делается из соображений пассивной безопасности. Средняя часть, где размещены люди, обычно защищена более жестким каркасом, а передняя и задняя смягчают удар и тем самым уменьшают инерционную нагрузку. У из тех же соображений обычно бывают ослаблены поперечины и лонжероны – их делают из хрупких металлов, которые разрушаются или деформируются при ударе, принимая на себя его основную энергию и, таким образом, смягчая его.

Кстати, именно для повышения показателей пассивной безопасности, двигатель машины, обычно, устанавливается на рычажной подвеске – такая конструкция служит для того, чтобы при ударе избежать перемещения двигателя в салон. Благодаря подвеске мотор опускается вниз, под пол кузова.

Жесткое рулевое колесо также представляет опасность для водителя, особенно при встречном столкновении. Именно поэтому рулевые ступицы изготавливаются большого диаметра и покрываются специальной упругой оболочкой – мягки накладки и сильфоны частично поглощают энергию удара.

Одним из самых эффективных и несложных средств безопасности при небольших затратах остаются ремни безопасности. Установка этих ремней является обязательной в соответствии с законодательством многих стран (в том числе и Российской Федерации). Не менее широкое распространение получили также подушки безопасности – еще одно простое средство, которое призвано ограничивать резкое перемещение людей в салоне в момент удара. Подушки безопасности автомобиля срабатывают только непосредственно при ударе, предохраняя от повреждений головы людей и верхние части туловища. К недостаткам подушек безопасности можно отнести достаточно громкий звук в процессе наполнения их газом – этот шум способен даже повредить барабанные перепонки. Кроме того, подушки безопасности недостаточно защищают людей при опрокидывании авто и при боковых ударах. Именно поэтому поиск способов их усовершенствования постоянно продолжается – например, ставятся эксперименты по замене подушек так называемыми сетками безопасности (которые также должны ограничивать резкое перемещение человека в салоне при аварии) – и прочими подобными средствами.

В качестве еще одного простого и эффективного противотравматического средства при аварии также можно назвать надежное крепление сидений – в идеале оно должно выдерживать многократную перегрузку (до 20g).

При заднем столкновении шею пассажира защищают от серьезных травм подголовники сидений. Ноги водителя в случае аварии защищает от повреждений травмобезопасный педальный узел – в таком узле, при столкновении, педали отделяются от своих креплений, смягчая жесткий удар.

Помимо перечисленных мер предосторожности, современные автомобили оборудованы безопасными стеклами, при разрушении рассыпающимися на неострые осколки и триплекс.

От размера авто и целостности его каркаса также зависит общая пассивная безопасность транспортного средства. при столкновении не должны менять свою форму – энергия удара поглощается другими деталями. Для проверки всех этих свойств, перед тем, как выйти в производство, каждый автомобиль подвергается специальным проверкам, называемым краш-тестами.

Итак, система пассивной безопасности автомобиля в своей полной комплектации значительно повышает возможность выживания для водителя и пассажиров в случае аварии и помогает им избежать серьезных травм.

Современные системы активной безопасности

Развитие автоиндустрии в последнее время подарило автолюбителям много новых систем, значительно повышающих полезные качества активной безопасности автомобиля.

Особенно распространенной в этом перечне является система АБС – антиблокировочная система тормозов. При она помогает предотвратить случайную блокировку колес и, таким образом, избежать потери управления машиной, а также его скольжения. Благодаря системе АБС значительно сокращается тормозной путь, что позволяет сохранять контроль над движением машины при экстренном торможении. Другими словами, при наличии АБС у водителя появляется возможность совершать необходимые маневры в процессе торможения. Электронный блок антиблокировочной системы через гидромодулятор воздействует на тормозную систему машины, на основании анализа сигналов, поступающих от датчиков вращения колес.

Наиболее часто, благодаря интенсивному торможению, водитель может предотвратить ДТП – поэтому любой автомобиль нуждается в исправно работающей тормозной системе в целом, и АБС в частности. Машина должна эффективно замедляться в любых ситуациях, тем самым уменьшая риск опасности для водителя, находящихся в салоне пассажиров, окружающих людей и других транспортных средств.

Безусловно, активная безопасность транспортного средства значительно повышается, если на нем установлена АБС. Кстати, кроме непосредственно автомобилей, этой системой оснащаются также прицепы, мотоциклы и даже колесные шасси самолетов! АБС последних поколений часто оборудованы также противопробуксовочной системой, электронным контролем устойчивости и вспомогательной системой для экстренного торможения.

АПС, антипротивобуксовочная система (ASR, Antriebs-Schlupf-Regelung), которая также называется системой контроля тяги, служит для устранения опасной потери сцепления с дорогой, благодаря контролю буксования ведущих колес машины. Особенно полно оценить полезные свойства АПС можно при управлении автомобилем на скользкой и/или влажной дороге, а также в прочих условиях, где проявляется недостаточное сцепление. Антипробуксовочная система напрямую связана с АБС, за счет чего получает всю необходимую информацию о скорости вращения ведущих и ведомых колес автомобиля.

СКУ, система курсовой устойчивости, называемая также электронным контролем устойчивости, тоже относится к активным системам безопасности автомобиля. Ее работа помогает предотвратить занос автомобиля. Этот эффект достигается благодаря тому, что компьютер управляет моментом силы колеса (или нескольких колес). Система курсовой устойчивости служит для стабилизации движения транспортного средства в наиболее опасных ситуациях – например, когда становится опасно высокой вероятность потери управления авто, или даже когда управление уже потеряно. Именно поэтому электронный контроль устойчивости считается одной из самых эффективных механизмов активной безопасности автомобиля.

РТС, электронный распределитель тормозных сил также является логическим дополнением системы АБС. Эта система распределяет тормозные усилия между колесами таким образом, чтобы водитель имел возможность управлять транспортным средством постоянно, а не только при экстренном торможении. РТС помогает сохранить устойчивость машины при торможении, поровну распределяя тормозное усилие между всеми ее колесами, анализируя их положение и дозируя тормозную силу наиболее эффективно. Кроме того, распределитель тормозных сил значительно уменьшает риск заноса или сноса в процессе торможения – особенно при повороте и на смешанных дорожных покрытиях.

ЭБД, электронная блокировка дифференциала, тоже связана с системой АБС и играет немаловажную роль в обеспечении активной безопасности автомобиля в целом. Как известно, дифференциал передает крутящий момент с КПП на ведущие колеса и корректно работает при условии прочного сцепления этих колес с дорогой. Однако бывают ситуации, когда одно из колес может оказаться на льду или в воздухе – тогда оно будет вращаться, а другое колесо, стоящее на поверхности твердо, потеряет свою силу вращения. Вот тогда-то и подключается ЭБД, благодаря работе, которой дифференциал блокируется, а крутящий момент передается всем его потребителям, в т.ч. и неподвижному ведущему колесу. То есть электронная блокировка дифференциала притормаживает буксующее колесо до тех пор, пока его частота вращения не уравняется с небуксующим. Особенно влияет ЭБД на безопасность машины при резком разгоне и движении на подъем. Также она значительно повышает уровень безаварийности движения в сложных погодных условиях и даже при движении задним ходом. Однако следует помнить, что ЭБД не срабатывает при прохождении поворотов.

АПС, акустическая парковочная система, относится к вспомогательным системам активной безопасности транспортного средства. Также она известна под такими названиями, как парктроник, акустическая парковочная система, PDC (Parking distance control), ультразвуковой датчик парковки… Терминов для определения АПС существует немало, однако служит это устройство одной главной цели – контролю дистанции между автомобилем и препятствиями во время парковки. С помощью ультразвуковых датчиков, парктроник способен измерять дистанцию от машины до близлежащих объектов. По мере того, как эти объекты приближаются к автомобилю, характер акустических сигналов АПС меняется, а на дисплее отображается информация об оставшемся до препятствия расстоянии.

АКК, адаптивный круиз-контроль – это устройство, также относящееся к вспомогательным системам активной безопасности автомобиля. Благодаря работе круиз-контроля, поддерживается постоянная скорость машины. При этом скорость автоматически снижается в случае ее увеличения, и, соответственно, повышается в случае понижения.

Кстати, всем известный стояночный ручной тормоз (в просторечии – ручник) тоже входит в число вспомогательных устройств для активной безопасности транспортного средства. Старый добрый ручник удерживает машину в неподвижности относительно поверхности опоры, придерживая ее на склонах и помогая затормаживанию на стоянках.

Системы помощи при подъеме и спуске, в свою очередь, также существенно повышают показатели активной безопасности автомобиля.

Прогресс ради жизни

К сожалению, полностью избегать случаев дорожно-транспортных происшествий пока не представляется возможным. Однако с каждым годом с конвейеров сходят сотни и тысячи автомобилей, все более совершенных в плане активной и пассивной безопасности. Новые поколения машин, по сравнению с предыдущими, укомплектованы гораздо более совершенными системами безопасности, позволяющими значительно снизить риск вероятности аварии и минимизировать ее последствия в тех случаях, когда избежать аварии не удастся.

Видео — активные системы безопасности

Видео — пассивная безопасность автомобиля

Заключение!

Безусловно, важнейшим определяющим фактором активной и пассивной безопасности автомобиля, является безотказность всех его жизненно важных систем, . Наиболее серьезные требования предъявляются к безотказности тех элементов машины, которые позволяют ей осуществлять разнообразные маневры. К таким устройствам относятся системы тормозов и рулевого управления, трансмиссия, подвеска, двигатель и т.д. Чтобы повысить показатели безотказности всех систем современных автомобилей, с каждым годом применяются все новые и новые технологии, используются не используемые ранее материалы и совершенствуется конструкция автомобилей всех марок.

  • Новости
  • Практикум

Генпрокуратура начала проверку автоюристов

Как утверждают в Генпрокуратуре, в России резко возросло количество судебных разбирательств, которые ведут «недобросовестные автоюристы», которые работают «не для защиты прав граждан, а для извлечения сверхприбылей». Как сообщают «Ведомости», информацию об этом ведомство направило в правоохранительные органы, ЦБ и Российский союз автостраховщиков. В Генпрокуратуре поясняют, что посредники пользуются отсутствием должной осмотрительности.

Владельцы кроссовера Tesla пожаловались на качество сборки

По словам автомобилистов, проблемы возникают с открытием дверей и стеклоподъемниками. Об этом в своём материале сообщает The Wall Street Journal. Стоимость Tesla Model X составляет около 138 000 долларов, но, если верить первым владельцам, качество кроссовера оставляет желать лучшего. К примеру, сразу у нескольких владельцев заклинили открывающиеся вверх.

Парковку в Москве можно будет оплатить картой Тройка

Пластиковые карты «Тройка», использующиеся для оплаты общественного транспорта, этим летом получат полезную для автомобилистов функцию. С их помощью можно будет оплатить стоянку в зоне платной парковки. Для этого паркоматы оборудуют специальным модулем для связи с центром обработки транспортных транзакций Московского метрополитена. Система сможет проверять, достаточно ли средств на балансе.

О пробках в Москве будут предупреждать за неделю

На такую меру специалисты центра пошли из-за работ в центре Москвы по программе «Моя улица», сообщает Официальный портал Мэра и правительства столицы. В ЦОДД уже сейчас анализируют автомобильные потоки в ЦАО. На данный момент на дорогах в центре бывают затруднения, в том числе на Тверской улице, Бульварном и Садовом кольце и Новом Арбате. В пресс-службе ведомства.

Отзыв Volkswagen Touareg добрался до России

Как сказано в официальном сообщении Росстандарта, причиной отзыва послужила вероятность ослабления фиксации стопорного кольца на опорном кронштейне педального механизма. Ранее компания Volkswagen объявила об отзыве 391 тысячи «Туарегов» по всему миру по той же причине. Как поясняет Росстандарт, в рамках отзывной кампании в России на всех автомобилях будет.

Владельцы Mercedes забудут, что такое проблемы с парковкой

По словам Цетше, которые приводит Autocar, в ближайшем будущем автомобили станут не просто транспортными средствами, а персональными помощниками, которые здорово упросят жизнь людям, перестав провоцировать стрессы. В частности, гендиректор Daimler заявил, что вскоре на автомобилях Mercedes появятся специальные датчики, которые «будут отслеживать параметры организма пассажиров и корректировать ситуацию.

Названа средняя цена нового автомобиля в России

Если в 2006 году средневзвешенная цена машины составляла примерно 450 тыс. рублей, то в 2016 — уже 1,36 млн рублей. Такие данные приводит аналитическое агентство «Автостат», изучившее ситуацию на рынке. Как и 10 лет назад, самыми дорогими на российском рынке остаются иномарки. Сейчас средняя цена нового автомобиля.

Mercedes выпустит мини-Гелендеваген: новые подробности

Новая модель, призванная стать альтернативой изящному Mercedes-Benz GLA, получит брутальную внешность в стилистике «Гелендевагена» — Mercedes-Benz G-класса. Немецкому изданию Auto Bild удалось разузнать новые подробности об этой модели. Итак, если верить инсайдерской информации, то Mercedes-Benz GLB будет отличаться угловатым дизайном. С другой стороны, полного.

Внедорожник GMC превратили в спорткар

телье Hennessey Performance всегда славилось своим умением щедро добавлять дополнительных скакунов «прокачиваемому» автомобилю, но в этот раз американцы явно поскромничали. GMC Yukon Denali мог бы превратиться в настоящего монстра, благо, что 6,2-литровая «восьмерка» позволяет это сделать, но мотористы Hennessey ограничились достаточно скромным «бонусом», увеличив мощность мотора.

Какой автомобиль купить новичку Когда долгожданные водительские права наконец-то получены, наступает самый приятный и волнительный момент — покупка автомобиля. Автопром наперебой предлагает покупателям самые навороченные новинки и неискушенному водителю очень сложно сделать правильный выбор. А ведь часто именно от первого.

Какой внедорожник выбрать: Juke, C4 Aircross или Mokka

Что снаружи Глазастый и экстравагантный «Нисан-Джук» не старается даже выглядеть солидным вседорожником, поскольку от этого автомобиля так и тянет мальчишеским задором. Эта машина никого не может оставить равнодушным. Она или нравится, или нет. Согласно свидетельству он является легковым универсалом, однако.

Какая машина является самым дорогим джипом в мире

Все автомобили мира можно разделить по категориям, в которых будет непременный лидер. Так можно выделить самый быстрый, мощный, экономичный автомобиль. Существует огромное количество подобных классификаций, но одна всегда пользуются особым интересом – самый дорогой автомобиль в мире. В этой статье.

КАК выбрать машину, Покупка и продажа.

Как выбрать машину Сегодня рынок предлагает покупателям огромный выбор машин, от которого просто разбегаются глаза. Поэтому прежде чем купить автомобиль, стоит учесть много важных моментов. В итоге, определившись с тем, что именно вы хотите, вы сможете выбрать авто, которое будет.

КАК выбрать марку автомобиля, какую марку автомобиля выбрать.

Как выбрать марку автомобиля При выборе машины необходимо изучить все плюсы и минусы автомобиля. Поищите информацию на популярных сайтах автомобильной тематики, на которых делятся опытом владельцы машин, и тестируют новинки профессионалы. Собрав всю необходимую информацию, вы можете вынести решение в.

Рейтинг ТОП-5: самая дорогая машина в мире

К ним можно относиться как угодно — восхищаться, ненавидеть, любоваться, испытывать отвращение, но равнодушным они не оставят никого. Часть из них — это просто памятник человеческой бездарности, выполненный из золота и рубинов в натуральную величину, часть настолько эксклюзивны, что при.

Что только люди не придумают, чтобы ощутить незабываемую минуту азарта от езды на своём автомобиле. Сегодня мы познакомим вас с тест-драйв пикапов не простым способом, а соединив его с воздухоплаванием. Нашей целью было обследовать характеристики таких моделей, как Ford Ranger, .

2018-2019 год: рейтинг страховых компаний КАСКО

Каждый владелец автомобиля стремится обезопасить себя от чрезвычайных ситуаций, связанных с авариями на дорогах или иного причинения вреда своему ТС. Одни из вариантов — заключение договора КАСКО. Однако в условиях, когда на рынке страхования присутствуют десятки фирм, предоставляющих услуги по.

  • Обсуждение
  • Вконтакте

Безопасность транспортных средств. Безопасность транспортного средства включает в себя комплекс конструктивных и эксплуатационных свойств, снижающих вероятность дорожно-транспортных происшествий, тяжесть их последствий и отрицательное влияние на окружающую среду.

Понятие безопасность конструкции автомобиля включает в себя активную и пассивную безопасность.

Активная безопасность конструкции — это конструктивные меры, направленные на предупреждение аварий. К ним относятся меры, обеспечивающие управляемость и устойчивость при движении, эффективное и надежное торможение, легкое и надежное рулевое управление, малую утомляемость водителя, хорошую обзорность, эффективное действие внешних осветительных и сигнальных приборов, а также повышение динамических качеств автомобиля.

Пассивная безопасность конструкции — это конструктивные мероприятия, исключающие или сводящие к минимуму последствия аварии для водителя, пассажиров и груза. Они предусматривают применение травмобезопасных конструкций рулевых колонок, энергоемких элементов на передней и задней части автомобилей, мягкой обивки кабины и кузова и мягких накладок, ремней безопасности, безосколочных стекол, герметичной топливной системы, надежных противопожарных устройств, замков для капота и кузова с блокирующими устройствами, безопасной компоновки деталей и всего автомобили.

В последние годы уделяется большое внимание совершенствованию безопасности конструкции автомобилей во всех производящих их странах. В Соединенных Штатах Америки более широко. Под активной безопасностью транспортного средства понимаются его свойства, снижающие вероятность возникновения дорожнотранспортного происшествия.

Активная безопасность обеспечивается несколькими эксплуатационными свойствами, позволяющими водителю уверенно управлять автомобилем, разгоняться и тормозить с необходимой интенсивностью, совершать маневрирование на проезжей части, которого требует дорожная обстановка, без значительных затрат физических сил. Основные из этих свойств: тяговые, тормозные, устойчивость, управляемость, проходимость, информативность, обитаемость.

Под пассивной безопасностью транспортного средства понимаютсяего свойства, снижающие тяжесть последствий дорожно-транспортного происшествия.

Различают внешнюю и внутреннюю пассивную безопасность автомобиля. Основным требованием внешней пассивной безопасности является обеспечение такого конструктивного выполнения наружных поверхностей и элементов автомобиля, при котором вероятность повреждений человека этими элементами в случае дорожно — транспортного происшествия была бы минимальной.

Как известно, значительное количество происшествий связано со столкновениями и наездами на неподвижное препятствие. В связи с этим одним из требований к внешней пассивной безопасности автомобилей является предохранение водителей и пассажиров от ранений, а также самого автомобиля от повреждений с помощью внешних элементов конструкции.

Рисунок 8.1 — Схема сил и моментов действующих на автомобиль

Рисунок 8.1 — Структура безопасности транспортных средств

Примером элемента пассивной безопасности может быть травмобезопасный бампер, назначение которого — смягчать удары автомобиля о препятствия при малых скоростях движения (например, при маневрировании в зоне стоянки).

Пределом выносливости перегрузок для человека является 50-60g (g-ускорение свободного падения). Пределом выносливости для незащищённого тела является величина энергии, воспринимаемая непосредственно телом, соответствующая скорости движения около 15 км/ч. При 50 км/ч энергия превышает допустимую примерно в 10 раз. Следовательно задача состоит в снижении ускорений тела человека при столкновении за счёт продолжительных деформаций передней части кузова автомобиля, при которых поглощалось бы как можно больше энергии.

То есть, чем больше деформация автомобиля и чем дольше она происходит, тем меньшие перегрузки испытывает водитель при столкновении с препятствием.

К внешней пассивной безопасности имеют отношение декоративные элементы кузова, ручки, зеркала и другие детали, закреплённые на кузове автомобиля. На современных автомобилях всё шире применяются утомленные ручки дверей, не наносящие травм пешеходам в случае дорожно — транспортного происшествия. Не применяются выступающие эмблемы заводов-изготовителей на передней части автомобиля.

К внутренней пассивной безопасности автомобиля предъявляются два основных требования:

Создание условий, при которых человек мог бы безопасно выдержать любые перегрузки;

Исключение травмоопасных элементов внутри кузова (кабины). Водитель и пассажиры при столкновении после мгновенной остановки автомобиля еще продолжают двигаться, сохраняя скорость движения, которую автомобиль имел перед столкновением. Именно в это время происходит большая часть травм в результате удара головой о ветровое стекло, грудью о рулевое колесо и рулевую колонку, коленями о нижнюю кромку щитка приборов.

Анализ дорожно-транспортных происшествий показывает, что подавляющее большинство погибших находилось на переднем сиденье. Поэтому при разработке мероприятий по пассивной безопасности в первую очередь уделяется внимание обеспечению безопасности водителя и пассажира, находящихся на переднем сиденье.

Конструкция и жесткость кузова автомобиля выполняются такими, чтобы при столкновениях деформировались передняя и задняя части кузова, а деформация салона (кабины) была по возможности минимальной для сохранения зоны жизнеобеспечения, то есть минимально необходимого пространства, в пределах которого исключено сдавливание тела человека, находящегося внутри кузова.

Кроме того, должны быть предусмотрены следующие меры, снижающие тяжесть последствии при столкновении:

Необходимость перемещения руля и рулевой колонки и поглощения ими энергии удара, а также равномерного распределения удара по поверхности груди водителя;

Исключение возможности выброса или выпадения пассажиров и водителя (надежность дверных замков);

Наличие индивидуальных защитных и удерживающих средств для всех пассажиров и водителя (ремни безопасности, подголовники, пневмоподушки);

Отсутствие травмоопасных элементов перед пассажирами и водителем;

Оборудование кузова травмобезопасными стеклами. Эффективность применения ремней безопасности в сочетании с другими мероприятиями подтверждена статистическими данными. Так, использование ремней уменьшает количество травм на 60 — 75% и снижает их тяжесть.

Одним из эффективных способов решения проблемы ограничения перемещения водителя и пассажиров при столкновении является применение пневматических подушек, которые при столкновении автомобиля с препятствием наполняются сжатым газом за 0,03 — 0,04с, воспринимают на себя удар водителя и пассажиров и тем самым снижают тяжесть травмы.

Под послеаварийной безопасностью транспортного средства понимаются его свойства в случае аварии не препятствовать эвакуации людей, не наносить травм при эвакуации и после нее. Основными мерами послеаварийной безопасности являются противопожарные мероприятия, мероприятия по эвакуации людей, аварийная сигнализация.

Наиболее тяжелым последствием дорожно — транспортного происшествия является возгорание автомобиля. Чаще всего возгорание происходит при тяжелых происшествиях, таких как столкновение автомобилей, наезды на неподвижные препятствия, а также опрокидывание. Несмотря на небольшую вероятность возгорания (0,03 -1,2% от общего количества происшествий), их последствия тяжелейшие.

Они вызывают почти полное разрушение автомобиля и при невозможности эвакуации — гибель людей, В таких происшествиях топливо выливается из поврежденного бака или из заливной горловины. Возгорание происходит от горячих деталей системы выпуска отработавших газов, от искры при неисправной системе зажигания или возникшей от трения деталей кузова об дорогу или о кузов другого автомобиля. Могут быть и другие причины возгорания.

Под экологической безопасностью транспортного средства понимается его свойство снижать степень отрицательного воздействия на окружающую среду. Экологическая безопасность охватывает все стороны использования автомобиля. Ниже перечислены основные аспекты экологии, связанные с эксплуатацией автомобиля.

Потеря полезной площади земли . Земля, необходимая для движения и стоянки автомобилей, исключается из пользования других отраслей народного хозяйства. Общая протяженность мировой сети автомобильных дорог с твердым покрытием превышает 10 млн км, что означает потерю площади свыше 30 млн га. Расширение улиц и площадей приводит к «увеличению территорий городов и удлинению всех коммуникаций. В городах с развитой дорожной сетью и предприятиями автосервиса площади, отведенные для движения и стоянок автомобилей, занимают до 70 % всей территории.

Кроме того, огромные территории занимают заводы по производству и ремонту автомобилей, службы обеспечения функционирования автомобильного транспорта: АЗС, СТО, кемпинги и т.д.

Загрязнение атмосферы . Основная масса вредных примесей, рассеянных в атмосфере, является результатом эксплуатации автомобилей. Двигатель средней мощности выбрасывает в атмосферу за один день эксплуатации около 10 м 3 отработавших газов, в состав которых входит окись углерода , углеводороды , окислы азота и многие другие токсичные вещества.

В нашей стране установлены следующие нормы среднесуточных предельно допустимых концентраций токсичных веществ в атмосфере:

Углеводороды — 0,0015 г/м;

Окись углерода — 0,0010 г/м;

Двуокись азота — 0,00004 г/м.

Использование природных ресурсов. На производство и экплуатацию автомобилей используются миллионы тонн высококачественных материалов, что приводит к истощению их природных запасов. При экспоненциальном росте потреблении энергии на душу населения, характерном для промышленно развитых стpaн, скоро наступит такой момент, когда существующие источники энергии не смогут удовлетворить потребности человека.

Значительная доля потребляемой энергии расходуется автомобилями, к.п.д. двигателей которых составляет 0,3 0,35, Следовательно, 65 — 70% энергетического потенциала не используется.

Шум и вибрация. Уровень шума, длительно переносимым человеком без вредных последствий, составляем 80 — 90 дБ На улицах крупных городов и промышленных центров уровень шума достигает 120- 130 дБ. Колебания почвы, вызванные движением автомобилей, пагубно сказываются на зданиях и сооружениях. Для защиты человека от пагубного влиянии шума транспортных средств применяют различные приемы: совершенствование конструкции автомобилей, шумозащитные сооружения и зеленые насаждения вдоль оживленных городских магистралей, организация такого режима движения, когда уровень шума наименьший.

Величина тяговой силы тем больше, чем больше крутящий момент двигателя и передаточные числа коробки передач и главной передачи. Но величина тяговой силы не может превысить силу сцепления ведущих колес с дорогой. Если тяговая сила превысит силу сцепления колес с дорогой, то ведущие колеса будут пробуксовывать.

Сила сцепления равна произведению коэффициента сцепления на сцепной вес. Для тягового автомобиля сцепной вес равен нормальной нагрузке, приходящейся на затормаживаемые колеса.

Коэффициент сцепления зависит от типа и состояния покрытия дороги, от конструкции и состояния шин (давление воздуха, рисунок протектора), от нагрузки и скорости движения автомобиля. Величина коэффициента сцепления снижается при мокрой и влажной поверхностях дороги, особенно при увеличении скорости движения и изношенном протекторе шин. Например, при сухой дороге с асфальтобетонным покрытием коэффициент сцепления равен 0,7 — 0,8, а для мокрой — 0,35 — 0,45. При обледенелой дороге коэффициент сцепления снижается до 0,1 — 0,2.

Сила тяжести автомобиля приложена в центре тяжести. У современных легковых автомобилей центр тяжести располагается на высоте 0,45 — 0,6 м от поверхности дороги и примерно посередине автомобиля. Поэтому нормальная нагрузка легкового автомобиля распределяется по его осям примерно поровну, т.е. сцепной вес равен 50 % нормальной нагрузки.

Высота расположения центра тяжести у грузовых автомобилей 0,65 — 1 м. У полностью груженных грузовых автомобилей сцепной вес составляет 60 75 % нормальной нагрузки. У полноприводных автомобилей сцепной вес равен нормальной нагрузке автомобиля.

При движении автомобиля указанные соотношения изменяются, так как происходит продольное перераспределение нормальной нагрузки между осями автомобилям при передаче ведущими колесами тяговой силы больше нагружаются задние колеса, а при торможении автомобиля — передние колеса. Кроме того, перераспределение нормальной нагрузки между передними и задними колесами имеет место при движении автомобиля на спуск или на подъем.

Перераспределение нагрузки, изменяя величину сцепного веса, влияет на величину сцепления колес с дорогой, тормозные свойства и устойчивость автомобиля.

Силы сопротивления движению . Тяговая сила на ведущих колесах автомобиля. При равномерном движении автомобиля по горизонтальной дороге такими силами являются: сила сопротивления качению и сила сопротивления воздуха. При движении автомобиля на подъем возникает сила сопротивления подъему (рис. 8.2), а при разгоне автомобиля — сила сопротивления разгону (сила инерции).

Сила сопротивления качению возникает вследствие деформации шин и поверхности дороги. Она равна произведению нормальной нагрузки автомобиля на коэффициент сопротивления качению.

Рисунок 8.2 — Схема сил и моментов действующих на автомобиль

Коэффициент сопротивления качению зависит от типа и состояния покрытия дороги, конструкции шин, их износа и давления воздуха в них, скорости движения автомобиля. Например, для дороги с асфальтобетонным покрытием коэффициент сопротивления качению равен 0,014 0,020, для сухой грунтовой дороги — 0,025-0,035.

На твердых дорожных покрытиях коэффициент сопротивления качению резко увеличивается при снижении давления воздуха в шинах, и возрастает с ростом скорости движения, а также с увеличением тормозного и крутящего моментов.

Сила сопротивления воздуха зависит от коэффициента сопротивления воздуха, лобовой площади и скорости движения автомобиля. Коэффициент сопротивления воздуха определяется типом автомобиля и формой его кузова, а лобовая площадь — колеей колес (расстоянием между центрами шин) и высотой автомобиля. Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля.

Сила сопротивления подъему тем больше, чем больше масса автомобиля и крутизна подъема дороги, которая оценивается углом подъема в градусах или величиной уклона, выраженной в процентах. При движении автомобиля под уклон сила сопротивления подъему, наоборот, ускоряет движение автомобиля.

На автомобильных дорогах с асфальтобетонным покрытием продольный уклон обычно не превышает 6%. Вели коэффициент сопротивления качению принять равным 0,02, то общее сопротивление дороги составит 8% т нормальной нагрузки автомобиля.

Сила сопротивления разгону (сила инерции) зависит от массы автомобиля, его ускорения (приросту скорости в единицу времени) и массы вращающихся частей (маховик, колеса), на ускорение которых также затрачивается тяговая сила.

При разгоне автомобиля сила сопротивления разгону направлена в сторону, обратную движению. При торможении автомобиля и замедлении его движения сила инерции направлена в сторону движения автомобиля.

Торможение автомобиля. Тормозная динамичность характеризуется способностью автомобиля быстро уменьшить скорость и остановиться. Надежная и эффективная тормозная система позволяет водителю уверенно вести автомобиль с большой скоростью и при необходимости остановить его на коротком участке пути.

Современные автомобили имеют четыре тормозные системы: рабочую, запасную, стояночную и вспомогательную. Причем, привод ко всем контурам тормозной системы раздельный. Наиболее важной для управления и безопасности является рабочая тормозная система. С ее помощью осуществляется служебное и экстренное торможение автомобиля.

Служебным называют торможение с небольшим замедлением (1-3 м/с 2). Его применяют для остановки автомобиля на ранее намеченном месте или для плавного снижения скорости.

Экстренным называют торможение с большим замедлением, обычно максимальным, доходящим до 8 м/с2. Его применяют в опасной обстановке для предотвращении пасши ни неожиданно появившееся препятствие.

При торможении автомобиля на и о колеса действует не сила тяги, а тормозные силы Рт1 и Рт2, как показано на (рис. 8.3). Сила инерции в этом случае направлена в сторону движения автомобиля.

Рассмотрим процесс экстренного торможения. Водитель заметив препятствие, оценивает дорожную обстановку, принимает решение о торможении и переносит ногу на тормозную педаль. Время t , необходимое для этих действий (время реакции водителя), изображено на (рис. 8.3) отрезком АВ.

Автомобиль за это время проходит путь S не снижая скорости. Затем водитель нажимает на тормозную педаль и давление от главного тормозного цилиндра (или тормозного крана) передается колесным тормозам (время срабатывания тормозного привода tpт — отрезок ВС. Время tт зависит в основном от конструкции тормозного привода. Оно равно в среднем 0,2-0,4с у автомобилей с гидравлическим приводом и 0,6-0,8 с с пневматическим. У автопоездов с пневматическим тормозным приводом время tт может достигать 2-3 с. Автомобиль за время tт проходит путь Sт, так же не снижая скорости.

Рисунок 8.3 — Остановочный и тормозной пути автомобиля

По истечении времени tрт тормозная система полностью включена (точка С), и скорость автомобиля начинает снижаться. При этом замедление сначала увеличивается (отрезок CD, время нарастания тормозной силы tнт), а затем остается примерно постоянным (установившимся) и равным jуст (время t уст, отрезок DE).

Длительность периода tнт зависит от массы транспортного средства, типа и состояния дорожного покрытия. Чем больше масса автомобиля и коэффициент сцепления шин с дорогой, тем больше время t. Значение этого времени находится в пределах 0,1-0,6 с. За время tнт автомобиль перемещается на расстояние Sнт, и скорость его несколько снижается.

При движении с установившимся замедлением (время tуст, отрезок DE), скорость автомобиля за каждую секунду уменьшается на одну и ту же величину. В конце торможения она падает до нуля (точка Е), и автомобиль, пройдя путь Sуст, останавливается. Водитель снимает ногу с тормозной педали и происходит оттормажи-вание (время оттормаживания toт, участок EF).

Однако под действием силы инерции передний мост при торможении нагружается, а задний, напротив, разгружается. Поэтому реакция на передних колесах Rzl увеличивается, а на задних Rz2 уменьшается. Соответственно изменяются силы сцепления, поэтому у большинства автомобилей полное и одновременное использование сцепления всеми колесами автомобиля наблюдается крайне редко и фактическое замедление меньше максимально возможного.

Чтобы учесть снижение замедления, в формулу для определения jуст приходится вводить поправочный коэффициент эффективности торможения K.э, равный 1,1-1,15 для легковых автомобилей и 1,3-1,5 для грузовых автомобилей и автобусов. На скользких дорогах тормозные силы на всех колесах автомобиля практически одновременно достигают значения силы сцепления.

Тормозной путь меньше остановочного, т.к. за время реакции водителя автомобиль перемещается на значительное расстояние. Остановочный и тормозной пути увеличиваются с ростом скорости и уменьшением коэффициента сцепления. Минимально допустимые значения тормозного пути при начальной скорости 40 км/ч на горизонтальной дороге с сухим, чистым и ровным покрытием нормированы.

Эффективность тормозной системы в большой степени зависит от ее технического состояния и технического состояния шин. В случае проникновения в тормозную систему масла или воды снижается коэффициент трения между тормозными накладками и барабанами (или дисками), и тормозной момент уменьшается. При износе протекторов шин уменьшается коэффициент сцепления.

Это влечет за собой снижение тормозных сил. В эксплуатации часто тормозные силы левых и правых колес автомобиля различны, что вызывает его поворот вокруг вертикальной оси. Причинами могут быть различный износ тормозных накладок и барабанов или шин или проникновение в тормозную систему одной стороны автомобиля масла или воды, уменьшающих коэффициент трения и снижающих тормозной момент.

Устойчивость автомобиля. Под устойчивостью понимают свойства автомобиля противостоять заносу, скольжению, опрокидыванию. Различают продольную и поперечную устойчивость автомобиля. Более вероятна и опасна потеря поперечной устойчивости.

Курсовой устойчивостью автомобиля называют его свойство двигаться в нужном направлении без корректирующих воздействий со стороны водителя, т.е. при неизменном положении рулевого колеса. Автомобиль с плохой курсовой устойчивостью все время неожиданно меняет направление движения.

Это создает угрозу другим транспортным средствам и пешеходам. Водитель, управляя неустойчивым автомобилем, вынужден особенно внимательно следить за дорожной обстановкой и постоянно корректировать движение, чтобы предотвратить выезд за пределы дороги. При длительном управлении таким автомобилем водитель быстро утомляется, повышается возможность ДТП.

Нарушение курсовой устойчивости происходит в результате действия возмущающих сил, например, порывов бокового ветра, ударов колес о неровности дороги, а также из-за резкого поворота управляемых колес водителем. Потеря устойчивости может быть вызвана и техническими неисправностями (неправильная регулировка тормозных механизмов, излишний люфт в рулевом управлении или его заклинивание, прокол шины и др.)

Особенно опасна потеря курсовой устойчивости при большой скорости. Автомобиль, изменив направление движения и отклонившись даже на небольшой угол, может через короткое время оказаться на полосе встречного движения. Так, если автомобиль, движущийся со скоростью 80 км/ч, отклонится от прямолинейного направления движения всего на 5°, то через 2,5с он переместиться в сторону почти на I м и водитель может не успеть вернуть автомобиль на прежнюю полосу.

Рисунок 8.4 — Схема сил, действующих на автомобиль

Часто автомобиль теряет устойчивость при движении по дороге с поперечным уклоном (косогору) и при повороте на горизонтальной дороге.

Если автомобиль движется по косогору (рис.8.4,а) сила тяжести G составляет с поверхностью дороги угол β и ее можно разложить на две составляющие: силу Р1, параллельную дороге, и силу Р2, перпендикулярную ей.

Сила Р1, стремиться сдвинуть автомобиль под уклон и опрокинуть его. Чем больше угол косогора β , тем больше сила Р1 , следовательно, тем вероятнее потеря поперечной устойчивости. При повороте автомобиля причиной потери устойчивости является центробежная сила Рц (рис. 8.4,б), направленная от центра поворота и приложенная к центру тяжести автомобиля. Она прямо пропорциональна квадрату скорости автомобиля и обратно пропорциональна радиусу кривизны его траектории.

Поперечному скольжению шин по дороге противодействуют силы сцепления, как уже отмечалось выше, которые зависят от коэффициента сцепления. На сухих, чистых покрытиях силы сцепления достаточно велики, и автомобиль не теряет устойчивости даже при большой поперечной силе. Если дорога покрыта слоем мокрой грязи или льда, автомобиль может занести даже в том случае, когда он движется с небольшой скоростью по сравнительно пологой кривой.

Максимальная скорость, с которой можно двигаться по криволинейному участку радиусом R без поперечного скольжения шин, равна Так, выполняя поворот на сухом асфальтобетонном покрытии (jx = 0,7) при R = 50м, можно двигаться со скоростью около 66 км/ч. Преодолевая тот же поворот после дождя (jx = 0,3) без скольжения можно двигаться лишь при скорости 40-43 км/ч. Поэтому перед поворотом нужно уменьшить скорость тем больше, чем меньше радиус предстоящего поворота. Формула определяет скорость, при которой колеса обоих мостов автомобиля скользят в поперечном направлении одновременно.

Такое явление в практике наблюдается крайне редко. Гораздо чаще начинают скользить шины одного из мостов — переднего или заднего. Поперечное скольжение переднего моста возникает редко и к тому же быстро прекращается. В большинстве скользят колеса заднего моста, которые, начав двигаться в поперечном направлении, скользят все быстрее. Такое ускоряющееся поперечное скольжение называют заносом. Для гашения начавшегося заноса нужно повернуть рулевое колесо в сторону заноса. Автомобиль при этом начнет двигаться по более пологой кривой, радиус поворота увеличиться, а центробежная сила уменьшится. Поворачивать рулевое колесо нужно плавно и быстро, но не на очень большой угол, чтобы не вызвать поворот в противоположную сторону.

Как только занос прекратиться, нужно также плавно и быстро вернуть рулевое колесо в нейтральное положение. Следует также заметить, что для выхода из заноса заднеприводного автомобиля подачу топлива нужно уменьшить, а на переднеприводном, напротив, увеличить. Часто занос возникает во время экстренного торможения, когда сцепление шин с дорогой уже использовано для создания тормозных сил. В этом случае следует немедленно прекратить или ослабить торможение и тем самым повысить поперечную устойчивость автомобиля.

Под действием поперечной силы автомобиль может не только скользить по дороге, по и опрокинуться на бок или на крышу. Возможность опрокидывания зависит от положения центра, тяжести автомобиля. Чем выше от поверхности автомобиля находится центр тяжести, тем вероятнее опрокидывание. Особенно часто опрокидываются автобусы, а также грузовые автомобили, занятые на перевозке легковесных, объемных грузов (сено, солома, пустая тара и т.д.) и жидкостей. Под действием поперечной силы рессоры с одной стороны автомобиля сжимаются и кузов его наклоняется, увеличивая опасность опрокидывания.

Управляемость автомобиля. Под управляемостью понимают свойство автомобиля обеспечивать движение в направлении, заданном водителем. Управляемость автомобиля больше, чем другие его эксплуатационные свойства, связана с водителем.

Для обеспечения хорошей управляемости конструктивные параметры автомобиля должны соответствовать психофизиологическим характеристикам водителя.

Управляемость автомобиля характеризуется несколькими показателями. Основные из них: предельное значение кривизны траектории при круговом движении автомобиля, предельное значение скорости изменения кривизны траектории, количество энергии, затрачиваемой на управление автомобилем, величина самопроизвольных отклонений автомобиля от заданного направления движения.

Управляемые колеса под воздействием неровностей дороги постоянно отклоняются от нейтрального положения. Способность управляемых колес сохранять нейтральное положение и возвращаться в него после поворота называется стабилизацией управляемых колес. Весовая стабилизация обеспечивается поперечным наклоном шкворней передней подвески. При повороте колес благодаря поперечному наклону шкворней автомобиль приподнимается, но своим весом стремиться вернуть повернутые колеса в исходное положение.

Скоростной стабилизирующий момент обусловлен продольным наклоном шкворней. Шкворень расположен так, что его верхний конец направлен назад, а нижний вперед. Ось шкворня пересекает поверхность дороги впереди пятна контакта колеса с дорогой. Поэтому при движении автомобиля сила сопротивления качению создает стабилизирующий момент относительно оси шкворня. При исправном рулевом приводе и рулевом механизме после поворота автомобиля управляемые колеса и рулевое колесо должны возвращаться в нейтральное положение без участия водителя.

В рулевом механизме червяк расположен относительно ролика с небольшим перекосом. В связи с этим в среднем положении зазор между червяком и роликом минимален и близок к нулю, а при отклонении ролика и сошки в любую сторону зазор увеличивается. Поэтому при нейтральном положении колес в рулевом механизме создается повышенное трение, способствующее стабилизации колес и скоростного стабилизирующих моментов.

Неправильная регулировка рулевого механизма, большие зазоры в рулевом приводе могут стать причиной плохой стабилизации управляемых колес, причиной колебания курса автомобиля. Автомобиль с плохой стабилизацией управляемых колес самопроизвольно меняет направление движения, вследствие чего водитель вынужден непрерывно поворачивать рулевое колесо то в одну, то в другую сторону, чтобы возвратить автомобиль на свою полосу движения.

Плохая стабилизация управляемых колес требует значительных затрат физической и психической энергии водителя, повышает износ шин и деталей рулевого привода.

При движении автомобиля на повороте наружные и внутренние колеса катятся по окружностям различного радиуса (рис. 8.4). Для того, чтобы колеса катились без скольжения, их оси должны пересекаться в одной точке. Л для выполнения этого условия управляемые колеса должны поворачиваться на разные углы. Поворот колес автомобиля на разные углы обеспечивает рулевая трапеция. Наружное колесо всегда поворачивается на меньший угол, чем внутреннее, и эта разница тем больше, чем больше угол поворота колес.

Значительное влияние на поворачиваемость автомобиля оказывает эластичность шин. При действии на автомобиль боковой силы (неважно, силы инерции или бокового ветра) шины деформируются и колеса вместе с автомобилем смещаются в сторону действия боковой силы. Это смещение тем больше, чем больше боковая сила и чем выше эластичность шин. Угол между плоскостью вращения колеса и направлением его движения называется углом увода 8 (рис. 8.5).

При одинаковых углах увода передних и задних колес автомобиль сохраняет заданное направление движения, но повернут относительно него на величину угла увода. Если угол увода колес передней оси больше угла увода колес задней тележки, то при движении автомобиля на повороте он будет стремиться двигаться по дуге большего радиуса, чем та, которую задает водитель. Такое свойство автомобиля называется недостаточной поворачиваемостью.

Если угол увода колес задней оси больше угла увода колес передней оси, то при движении автомобиля на повороте он будет стремиться двигаться по дуге меньшего радиуса, чем та, которую задает водитель. Такое свойство автомобиля называется избыточной поворачиваемостью.

Поворачиваемостью автомобиля можно в некоторой степени управлять, применяя шины разной пластичности, изменяя давление в них, изменяя распределение массы автомобиля по осям (за счет размещения груза).

Рисунок 8.5 — Кинематика поворота автомобиля и схема увода колеса

Автомобиль с избыточной поворачиваемостью более маневренный, но требует большего внимания и высокого профессионального мастерства от водителя. Автомобиль с недостаточной поворачиваемостью требует меньшего внимания и мастерства, но затрудняет работу водителя, так как требует поворотов рулевого колеса на большие углы.

Влияние поворачиваемости и на движение автомобиля становится заметным и существенным только на высоких скоростях.

Управляемость автомобиля зависит от технического состояния его ходовой части и рулевого управления. Уменьшение давления в одной из шин увеличивает ее сопротивление качению и уменьшает поперечную жесткость. Поэтому автомобиль со спущенной шиной постоянно отклоняемся и ее сторону. Для компенсации этого увода водитель поворачивает управляемые колеса в сторону, противоположную уводу, и колеса начинают катиться с боковым скольжением, интенсивно изнашиваясь при этом.

Износ деталей рулевого привода и шкворневого соединения приводит к образованию зазоров и возникновению произвольных колебаний колес.

При больших зазорах и высокой скорости движения колебания передних колес могут быть настолько значительными, что нарушится их сцепление с дорогой. Причиной колебания колес может явиться их дисбаланс из-за дисбаланса шины, заплатки па камере, грязи на диске колеса. Для предотвращения колебаний колес их необходимо балансировать на специальном стенде установкой на диск балансировочных грузов.

Проходимость автомобиля. Под проходимостью понимают свойство автомобиля двигаться по неровной и труднопроходимой местности не задевая за неровности нижним контуром кузова. Проходимость автомобиля характеризуется двумя группами показателей: геометрическими показателями проходимости и опорно- сцепными показателями проходимости. Геометрические показатели характеризуют вероятность задевания автомобиля за неровности, а опорно — сцепные характеризуют возможность движения по труднопроходимым участкам дорог и бездорожью.

По проходимости все автомобили можно разделить на три группы :

Автомобили общего назначения (колесная формула 4×2, 6×4);

Автомобили повышенной проходимости (колесная формула 4×4, 6×6);

Автомобили высокой проходимости, имеющие специальную компоновку и конструкцию, многоосные со всеми ведущими колесами, гусеничные или полугусеничные, автомобили — амфибии и другие автомобили, специально предназначенные для работы только в условиях бездорожья.

Рассмотрим геометрические показатели проходимости. Дорожный просвет — это расстояние между низшей точкой автомобиля и поверхностью дороги. Этот показатель характеризует возможность движения автомобиля без задевания за препятствия, расположенные на пути движения (рис.8.6).

Рисунок 8.6 — Геометрические показатели проходимости

Радиусы продольной и поперечной проходимости представляют собой радиусы окружностей, касательных к колесам и низшей точки автомобиля, расположенной внутри базы (колеи). Эти радиусы характеризуют высоту и очертания препятствия, которое может преодолеть автомобиль, не задевая за него. Чем они меньше, тем выше способность автомобиля преодолевать значительные неровности без задевания за них своими низшими точками.

Передний и нижний углы свеса, соответственно αп1 и αп2, образованы поверхностью дороги и плоскостью, касательной к передним или задним колесам и к выступающим низшим точкам передней или задней части автомобиля.

Максимальная высота порога, который может преодолеть автомобиль, для ведомых колес составляет 0,35. 0,65 радиуса колеса. Максимальная высота порога, преодолеваемого ведущим колесом, может достигать радиуса колеса и иногда ограничивается не тяговыми возможностями автомобиля или сцепными свойствами дороги, а малыми величинами углов свеса или просвета.

Максимально необходимая ширина проезда при минимальном радиусе поворота автомобиля характеризует возможность маневрировать на малых площадках, поэтому проходимость автомобиля в горизонтальной плоскости часто рассматривают как отдельное эксплуатационное свойство маневренность. Наиболее маневренными являются автомобили со всеми управляемыми колесами. В случае буксировки прицепом или полуприцепов маневренность автомобиля ухудшается, так как мри поворотах автопоезда прицеп смешается к центру поворота, именно поэтому ширина полосы движения автопоезда больше, чем одиночного автомобиля.

К опорно — сцепным показателям проходимости относятся следующие. Максимальная сила тяги — наибольшая сила тяги, которую способен развивать автомобиль па низшей передаче. Сцепной вес — сила тяжести автомобиля, приходящаяся на ведущие колеса. Чем больше сцен пой вес, тем выше проходимость автомобиля.

Среди автомобилей с колесной формулой 4×2 наибольшую проходимость имеют заднемоторные заднеприводные и переднемоторные переднеприводные автомобили, так как при такой компоновке ведущие колеса всегда нагружены массой двигателя. Удельное давление шин на опорную поверхность определяется как отношение вертикальной нагрузки на шину к площади контакта, замеренной по контуру пятна контакта шины с дорогой q = GF.

Этот показатель имеет большое значение для проходимости автомобиля. Чем меньше удельное давление, тем меньше разрушается грунт, меньше глубина образуемой колеи, меньше сопротивление качению и выше проходимость автомобиля.

Коэффициент совпадении колеи представляет собой отношение колеи передних колес к колее задних колес. При полном совпадении колеи передних и задних колес задние катятся по грунту, уплотненному передними колесами, и сопротивление качению при этом минимально. При несовпадении колеи передних и задних колес затрачивается дополнительная энергия на разрушение задними колесами уплотненных стенок колеи, образованной передними колесами. Поэтому у автомобилей повышенной проходимости часто на задние колеса устанавливают одинарные шины, уменьшая тем самым сопротивление качению.

Проходимость автомобиля во многом зависит от его конструкции. Так, например, в автомобилях повышенной проходимости применяют дифференциалы повышенного трения, блокируемые межосевые и межколесные дифференциалы, широкопрофильные шины с развитыми грунтозацепами, лебедки для самовытаскивания и другие приспособления, облегчающие проходимость автомобиля в условиях бездорожья.

Информативность автомобиля. Под информативностью понимают свойство автомобиля обеспечивать необходимой информацией водителя и других участников движения. В любых условиях воспринимаемая водителем информация имеет важнейшее значение для безопасного управления автомобилем. При недостаточной видимости, особенно ночью, информативность среди других эксплуатационных свойств автомобиля оказывает особенное влияние на безопасность движения.

Различают внутреннюю и внешнюю информативность.

Внутренняя информативность — это свойство автомобиля обеспечивать водителя информацией о работе агрегатов и механизмов. Она зависит от конструкции панели приборов, устройств, обеспечивающих обзорность, рукояток, педалей и кнопок управления автомобилем.

Расположение приборов на панели и их устройство должны позволять водителю тратить минимальное время для наблюдения за показаниями приборов. Педали, рукоятки, кнопки и клавиши управления должны быть расположены так, чтобы водитель легко их находил, особенно ночью.

Обзорность зависит в основном от размера окон и стеклоочистителей, ширины и расположения стоек кабины, конструкции стеклоомывателей, системы обдува и обогрева стекол, расположения и конструкции зеркал заднего вида. Обзорность зависит также от удобства сиденья.

Внешняя информативность — это свойство автомобиля информировать других участников движения о своем положении на дороге и намерениях водителя по изменению направления и скорости движения. Она зависит от размеров, формы и окраски кузова, расположения световозвращателей, внешней световой сигнализации, звукового сигнала.

Грузовые автомобили средней и большой грузоподъемности, автопоезда, автобусы благодаря своим габаритам более заметны и лучше различимы, чем легковые автомобили и мотоциклы. Автомобили, окрашенные в темные цвета (черный, серый, зеленый, синий), из-за трудности их различения в 2 раза чаще попадают в ДТП, чем окрашенные в светлые и яркие цвета.

Система внешней световой сигнализации должна отличаться надежностью работы и обеспечивать однозначное толкование сигналов участниками дорожного движения в любых условиях видимости. Фары ближнего и дальнего света, а также другие дополнительные фары (прожектор, противотуманные) улучшают внутреннюю и внешнюю информативность автомобиля при движении ночью и в условиях недостаточной видимости.

Обитаемость автомобиля. Обитаемость транспортного средства — это свойства окружающей водителя и пассажиров среды, определяющие уровень комфортабельности и эстетичное i и места их труда и отдыха. Обитаемость характеризуется микроклиматом, эргономическими характеристиками кабины, шумом и вибрациями, загазованностью и плавностью хода.

Микроклимат характеризуется совокупностью температуры, влажности и скорости воздуха. Оптимальной температурой воздуха в кабине автомобиля считается 18. 24°С. Понижение или повышение температуры, особенно на длительный период времени, сказывается на психофизиологических характеристиках водителя, приводит к замедлении) реакции и умственной деятельности, к физическому утомлению и, как результат, к снижению производительности труда и безопасности движения.

Влажность и скорость воздуха в значительной степени влияют на терморегуляцию организма. При низкой температуре и высокой влажности повышается теплоотдача и организм подвергается более интенсивному охлаждению. При высокой температуре и влажности теплоотдача резко снижается, что ведет к перегреву организма.

Водитель начинает ощущать движение воздуха в кабине при его скорости 0,25 м/с. Оптимальная скорость движения воздуха в кабине около 1м/с.

Эргономические свойства характеризуют соответствие сиденья и органов управления транспортного средства антропометрическим параметрам человека, т.е. размерам его тела и конечностей.

Конструкция сиденья должна способствовать посадке водителя за органами управления, обеспечивающей минимум затрат энергии и постоянную готовность в течении длительного времени.

Цветовая гамма внутри салона тоже оказывает определенное внимание на психику водителя, что, естественно, сказывается на работоспособности водителя и безопасности движения.

Природа шума и вибраций одна и та же — механические колебания деталей автомобиля. Источниками шума в автомобиле являются двигатель, трансмиссия, система выпуска отработавших газов, подвеска. Действие шума на водителя является причиной увеличения его времени реакции, временного ухудшения характеристик зрения, снижения внимания, нарушения координации движений и функций вестибулярного аппарата.

Отечественные и международные нормативные документы устанавливают предельно допустимый уровень шума в кабине в пределах 80 — 85 ДБ.

В отличие от шума, воспринимаемого ухом, вибрации воспринимаются поверхностью тела водителя. Так же, как и шум, вибрация наносит большой вред состоянию водителя, а при постоянном воздействии в течении длительного времени может повлиять на его здоровье.

Загазованность характеризуется концентрацией отработавших газов, паров топлива и других вредных примесей в воздухе. Особую опасность для водителя представляет окись углерода — газ без цвета и запаха. Попадая в кровь человека через легкие, он лишает ее возможности доставлять кислород клеткам организма. Человек погибает от удушья, ничего не чувствуя и не понимая, что с ним происходит.

В этой связи водитель должен внимательно следить за герметичностью выпускного тракта двигателя, предотвращать засасывание газов и паров из моторного отсека в кабину. Категорически запрещается пускать и главное прогревать двигатель в гараже при нахождении в нем людей.

Автомобилей на дорогах становится все больше, управлять им в плотном потоке становится все сложнее. Кроме того, в движении принимает участие большое количество молодых водителей, не обладающих достаточным опытом управления автомобилем.

Для помощи водителю и для повышения безопасности дорожного движения разрабатывается большое количество электронных систем безопасности автомобилей.

Автомобильные системы безопасности

Все системы безопасности делятся на активные и пассивные:

  • назначение активных систем – предотвратить столкновения автомобилей;
  • пассивные системы безопасности снижают тяжесть последствий при аварии.

Данный обзор – попытка перечислить и дать характеристику современным системам активной безопасности.

1. (АБС, ABS). Предотвращает проскальзывание колес во время торможения автомобиля. Часто (но не всегда) работа АБС сокращает тормозной путь автомобиля, особенно на скользкой дороге.

3. Система аварийного торможения (EBA, BAS). В случае быстро поднимает давление в тормозной системе. Используется вакуумный способ управления.

4. Система динамического контроля над торможением (DBS, HBB). Быстро поднимает давление при экстренном торможении, но способ реализации иной, гидравлический.

5. (EBD, EBV). Фактически это программное расширение последних поколений АБС. Тормозное усилие правильно распределяется между осями автомобиля, не допуская блокировки, в первую очередь, задней оси.

6. Электромеханическая тормозная система (ЕМВ). Тормозные механизмы на колесах активируются при помощи электродвигателей. На серийных автомобилях ещё не применяется.

7. (АСС). Сохраняет выбранную водителем скорость автомобиля, поддерживая при этом безопасную дистанцию до движущегося впереди автомобиля. Для поддержания дистанции система может изменять скорость автомобиля, воздействуя на тормоза, или дроссельную заслонку двигателя.

8. (Hill Holder, HAS). При трогании автомобиля на подъеме система не позволяет автомобилю откатываться назад. Даже при отпущенной педали тормоза давление в тормозной системе сохраняется и начинает уменьшаться при нажатии на педаль «газа».

9. (HDS, DAC). Сохраняет безопасную скорость автомобиля при движении на спусках. Включается водителем, но активируется при определенной крутизне спуска и достаточно малой скорости автомобиля.

10. (ASR, TRC, ASC, ETC,TCS). Не дает колесам автомобиля проскальзывать при наборе им скорости.

11. (APD, PDS). Позволяет обнаружить пешехода, поведение которого может привести к столкновению. При опасности оповещает водителя и включает тормозную систему.

12. (PTS, Park Assistant, OPS). Помогает водителю припарковать автомобиль в стесненных условиях. Некоторые разновидности систем выполняют эту работу в автоматическом или автоматизированном режиме.

13. (Area View, AVM). При помощи системы видеокамер, а точнее, синтезированного с них изображения на мониторе помогает управлять автомобилем в стесненных условиях.

14. . Берет управление автомобиля на себя в опасной ситуации для увода автомобиля из-под удара.

15. . Эффективно удерживает автомобиль на полосе движения, обозначенной линиями разметки.

16. . Контролируя наличие помех в «мертвых зонах» зеркал заднего вида помогает безопасно выполнить маневр перестроения.

17. . При помощи видеокамер, реагирующих на тепловое излучение предметов, на мониторе создается изображение, помогающее управлять автомобилем при недостаточной видимости.

18. . Реагирует на знаки ограничения скорости, доводит эту информацию до водителя.

19. . Выполняет мониторинг состояния водителя. Если, по мнению системы, водитель устал, она требует остановки и отдыха.

20. . При аварии, после первого столкновения включает тормозную систему автомобиля, чтобы избежать последующих столкновений.

21. . Наблюдает за обстановкой вокруг автомобиля и при необходимости принимает меры, призванные предотвратить аварию.

Сегодня поговорим об активной. Над повышением надежности и эффективности систем безопасности современных автомобилей работают ученые и программисты, специализирующиеся на перспективных разработках в разных областях человеческих знаний: материаловедении, электроники, физики, биологии и многих других.

Это обусловлено как сложностью задач, возлагаемых на систему безопасности в случае ДТП, так и необходимостью оснащения автомобиля устройствами, способными «предвидеть» и предотвращать ДТП. Долгое время после зарождения автомобилестроения основное внимание разработчиков было направлено на повышение характеристик пассивной системы безопасности, то есть конструкторы стремились обеспечить максимальную защиту водителя и пассажира от последствий случившейся аварии. Но сейчас уже никто в мире не ставит под сомнение утверждение, что более важным направлением развития систем безопасности является разработка эффективного комплекса средств обнаружения и распознавания нештатных дорожных ситуаций, а также создание исполнительных устройств, способных взять управление автомобилем на себя и не допустить ДТП. Такой комплекс технических средств, установленных на легковом автомобиле, носит название активной системы безопасности. Слово «активная» говорит о том, что система самостоятельно (без участия водителя) оценивает текущую дорожную обстановку, принимает решение и начинает управлять устройствами автомобиля с целью предотвращения развития событий по опасному сценарию.

Сегодня на автомобилях достаточно широко применяются следующие элементы системы активной безопасности:

Источник http://orthograf.ru/kontrolnaya-rabota-aktivnaya-i-passivnaya-bezopasnost-avtomobilya-sistemy/

Источник http://strizhmoscow.ru/sistemy-aktivnoi-i-passivnoi-bezopasnosti-legkovyh-avtomobilei-passivnaya/

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Releated

Сиденья и ремни безопасности

Open Library — открытая библиотека учебной информации Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям. Категории Транспорт Сиденья и ремни безопасности 2-6 ВНИМАНИЕ • В случае если нужно быстро согреть сиденье, включите режим сильного нагрева. После того, как сиденье нагреется, переключите обогреватель в режим слабого нагрева, чтобы сиденье […]

Ремни безопасности в автомобиле

Ремень безопасности устройство,виды,предназначение,фото Сейчас автомобили комплектуются значительным количеством систем и средств безопасности. Направлены они на предотвращение потери контроля на авто во время нештатных ситуаций (активные системы) и максимально возможное снижение травмирования пассажиров при ДТП (пассивные средства). Начиналось же все с ремней безопасности, которые «перекочевали» на автотранспорт с авиации. Первые прототипы ремней появились практически с началом […]