ЦПГ — цилиндро-поршневая группа двигателя. Особенности конструкции, принцип работы, ремонт, замена деталей

Содержание

5 основных деталей, составляющих ЦПГ двигателя

Цилиндро-поршневая группа

Ремонт

Качественный ремонт силовой установки возможен только в том случае, когда мастер хорошо знает о назначении каждой детали. Если двигатель – это сердце автомобиля, то цилиндропоршневая группа является миокардом этого органа. Малейшая неточность при установке и настройке этого механизма обязательно отразится на эффективности работы мотора, поэтому прежде чем приступать к «хирургическому вмешательству», следует подробно изучить принцип работы ЦПГ.

Цилиндро поршневая группа двигателя

Поршни автомобиля можно образно сравнить с педалями велосипеда. Эти детали также прикреплены к рычагу, который циклично опускается и поднимается, будучи прикрепленным к горизонтально расположенной оси. Если велосипед приводится в движение мускульной силой ног человека, то на поршень воздействует расширяющиеся газы, которые воспламеняясь от искры или от чрезмерного давления внутри цилиндра, давят на эту деталь и заставляют рабочую ось совершать вращательные движения.

Наличие в автомобиле системы газораспределения и воспламенение газов позволяет максимально оптимизировать процесс сгорания топлива. По этой причине современные автомобили и мототехника обладают не только значительными показателями мощности, но и расходуют относительно небольшое количество горючего. Задача мастера не нарушить заданные инженерами зазоры и расположение деталей во время проведения сборочно-разборочных операций. Также нельзя допускать проникновения внутрь ЦПГ абразива. Пыль, песок и грязь, могут существенно сократить срок службы узла, поэтому так важно обеспечить надлежащие условия при выполнении ремонтных работ.

Расшифровка аббревиатуры ЦПГ — цилиндро поршневая группа. Подобное обозначение узла может часто встречаться в специальной литературе, поэтому рекомендуется изучить профессиональную терминологию, прежде чем приступать к самостоятельному ремонту двигателя внутреннего сгорания.

Из чего изготавливается ЦПГ

При изготовлении ЦПГ используются только прочные материалы, которые способны выдержать нагрузки, возникающие при сгорании топливно-воздушной смеси. Прежде всего, металл должен легко переносить тепловое воздействие. Внутри цилиндра температура расширяющихся газов может достигать 1000˚С. Изменение метрических параметров металла не должно быть слишком большим. Это необходимо для того, чтобы сохранялись рабочие зазоры между взаимодействующими деталями.

Износостойкость также является одной из важнейших характеристик элементов ЦПГ. Как правило, работа элементов цилиндро поршневой группы осуществляется в условиях масляного тумана. Стойкость к износу главных деталей, позволяет эксплуатировать двигатель при пробеге автомобиля 200 тыс. км. и более, но только при условии применения качественного моторного масла.

Наиболее часто изготовление элементов ЦПГ осуществляется из следующих материалов:

  • Чугун.
  • Алюминиевые сплавы.
  • Сталь.
  • Титан.

Для придания деталям ЦПГ определенных свойств их могут подвергать закалке, защитному напылению металлов, устойчивых к трению и коррозии.

Инженерам ведущих автоконцернов, при разработке новых металлических сплавов для ЦПГ, удалось получить легкие и прочные детали, замена которых требуется только при длительном использовании либо грубом нарушении правил эксплуатации.

Поршни

Детали ЦПГ

К деталям, которые составляют цилиндро-поршневую группу, относятся:

  • Цилиндр.
  • Поршень.
  • Поршневой палец.
  • Поршневые кольца.
  • Стопорные кольца.

Цилиндр двигателя может представлять собой съемную конструкцию. Наиболее часто такая разновидность детали встречается в мототехнике, но некоторые двигатели автомобилей также оснащаются съемными гильзами, которые можно без особого труда выпрессовать и заменить новыми элементами.

Ресурс ЦПГ зависит не только от прочности материалов, из которых изготовлены детали, но и от качества смазки. Качественное масло создает надежную пленку на трущихся элементах, тем самым обеспечивая длительный период использования двигателя без необходимости проведения ремонта ЦПГ.

Поршень двигателя конструктивные особенности

Поршень двигателя должен иметь небольшую массу. Этот элемент совершает тысячи возвратно-поступательных движений в минуту, поэтому деталь не только должна идеально скользить вдоль стенок цилиндра, но и иметь минимальные значения инерции. Это качество особенно важно при преодолении поршнем верхних и нижних мертвых точек. Максимально возможное снижение массы поршня позволяет снизить эффект вибрации, существенно улучшить динамические показатели двигателя.

Даже качественно изготовленный поршень, установленный в цилиндр двигателя, не способен обеспечить достаточный уровень компрессии, поэтому на боковых поверхностях этого элемента имеются канавки для колец. В поршень также устанавливается прочная втулка, называемая пальцем, с помощью которой осуществляется надежная фиксация этого элемента в головке шатуна.

Конструкция поршня

Поршневые кольца: виды и состав

Поршневые кольца являются обязательными элементами ЦПГ двигателя. От состояния этих деталей будет в значительной степени зависеть мощность двигателя, а также такие показатели как расход масла и цвет выхлопных газов. Для обеспечения нормальной работы цилиндропоршневой группы четырехтактного двигателя применяются следующие виды поршневых колец:

  • Компрессионные.
  • Маслосъемные.

Компрессионные кольца применяются для предотвращения прорыва газа. Благодаря наличию этих элементов существенно повышается степень сжатия, поэтому увеличивается мощность при стандартном уровне потребления горючего.

Маслосъемные кольца снимают масляную пленку со стенок цилиндра при опускании поршня, тем самым предотвращая попадание смазки в камеру сгорания. Чрезмерный износ маслосъемных колец вызывает повышенный расход моторного масла. Кроме того, на поршнях, головке блока цилиндров и свечах может образовывать нагар, который оказывает негативное воздействие на качество работы двигателя.

Поршневые кольца должны обладать хорошей упругостью, минимальными показателями теплового расширения и устойчивостью к воздействию агрессивной среды. Учитывая эти требования, инженеры пытаются создать детали, обладающие уникальными свойствами. Для обеспечения продолжительной работы поршневых колец их изготавливают из упругих марок стали, а для защиты от влаги и химически активных веществ, изделия покрывают слоем хрома.

Система смазки цилиндров

Система смазки цилиндров кардинально отличается у двух- и четырехтактных двигателей. В автомобили устанавливаются четырехтактные силовые установки, поэтому подача масла в них осуществляется посредством нагнетающего механизма, приводимого в движение коленчатым валом. Непосредственная смазка цилиндров осуществляется разбрызгиванием масла из шатунных и коренных шеек коленчатого вала.

Маслосъемными кольцами снимаются излишки масла, но небольшая часть остается на стенках, поэтому компрессионные кольца не оказывают негативного воздействия на цилиндр даже при длительной эксплуатации.

В двухтактных двигателях, которые часто устанавливают на скутеры, культиваторы, а также бензоинструменты, смазывание цилиндров осуществляется маслом, добавляемым в бензин. Современные моторы этого типа оснащаются специальным дозирующим устройством, которое осуществляет впрыск смазки в бензин, но в устаревших моделях приходится вручную смешивать масло с топливом.

Цилиндры

Охлаждение ЦПГ двигателя

Цилиндро-поршневая группа может иметь следующие разновидности охлаждения:

  • Жидкостное.
  • Воздушное.

Жидкостное охлаждение представляет собой систему, состоящую из помпы, радиатора, термостата и каналов, которые подведены ко всем нагревающимся элементам двигателя внутреннего сгорания. Такой способ отвода тепла напоминает работу отопительного оборудования, в котором также есть котел, система трубопроводов и радиаторов. Роль нагревателя в ДВС играет цилиндропоршневая группа. Как правило, двигатель сконструирован таким образом, что постоянно циркулирующая жидкость омывает цилиндр и тепло доставляется затем в радиатор, где передается атмосферному воздуху. В системах воздушного охлаждения отсутствует «посредник» в виде жидкости. Для отвода тепла цилиндры в двигателях с подобным типом охлаждения изготавливаются с металлическими ребрами. Большая площадь охлаждения материала способствует поддержанию рабочей температуры ЦПГ.

Особенности ЦПГ мотоцикла и мопеда

Среди преимуществ ЦПГ мотоциклов и мопедов следует отметить возможность ремонта при минимальных временных затратах. В таких транспортных средствах цилиндр крепится к картеру посредством шпилек, поэтому снять с двигателя изношенную деталь и установить новую ЦПГ не составляет большого труда.

Большая часть скутеров и мопедов оснащается двухтактными двигателями. Ремонт таких силовых установок более прост, за счет отсутствия клапанной системы газораспределения. Во многих случаях, для выполнения такой работы даже не требуется осуществлять демонтаж двигателя с рамы. Особенностью ЦПГ двухтактных двигателей заключается также в отсутствии маслосъемного кольца.

Четырехтактные двигатели также устанавливаются на мототехнику. Цилиндропоршневая группа тяжелых мотоциклов часто состоит более чем из одного цилиндра. Нередко эти элементы даже разведены в разные стороны для обеспечения более эффективного охлаждения, которое на этом виде техники может быть двух типов. Небольшие мотоциклы и скутера наиболее часто оснащаются цилиндрами с алюминиевыми ребрами, в которых снижение температуры ЦПГ осуществляется только за счет встречного потока воздуха.

Что такое ЦПГ в двигателе и принцип её работы

Цилиндропоршневая группа позволяет эффективно преобразовывать энергию сгорающего топлива в механическое движение. Поршень в такой системе движется, подобно пуле из патрона револьвера, за счет расширяющегося газа. Однонаправленное движение преобразуется во вращательное за счет использования шатунного механизма. Наглядно увидеть работу такой системы можно в паровозе или макетных установках, поясняющих принцип функционирования двигателя внутреннего сгорания. Паровой двигатель классической конструкции сейчас практически не используется, поэтому для понимания принципа моторов, работающих на углеводородном топливе достаточно изучить особенности двух- и четырехтактных силовых установок.

Работа в 4 такта

Преобразования тепловой энергии в механическую, в четырехтактных двигателях внутреннего сгорания, осуществляется следующим образом:

  • Поршень идет вниз и происходит наполнение цилиндра воздушно-топливной смесью (открыт только впускной клапан).
  • Поршень идет вверх. Происходит сжатие воздушно-топливной смеси (все клапаны закрыты).
  • Поршень идет вниз за счет расширения газов от воспламененной топливной смеси. Возгорание происходит сразу после прохождения поршнем верхней мертвой точки (все клапаны закрыты).
  • Поршень идет вверх, и происходит удаление отработанных газов (открыт выпускной клапан).

После прохождения 4 циклов процесс повторяется вновь.

Вне зависимости от количества цилиндров четырехтактного двигателя в каждом из них происходит смена режимов в последовательности, описанной выше, но не одновременно, а с определенным смещением по времени. Применение такого принципа позволяет обеспечить наиболее плавное движение коленвала.

Работа в 2 такта

Работа двухтактного двигателя намного проще четырехтактной системы. В таких устройствах преобразование энергии происходит следующим образом:

  • Поршень идет вниз посредством давления расширяющихся газов. При достижении поршнем уровня открытого окна (проема в цилиндре) отработанные газы удаляются. Втянутая отрицательным давлением в кривошипно-шатунную камеру воздушно-топливная смесь поступает в цилиндр.
  • Поршень идет вверх и достигает верхней мертвой точки. Происходит возгорание топлива.

Особенностью двигателей этой конструкции является возможность завершения полного рабочего цикла за один оборот коленвала.

Запрессовка цилиндров

Особенности подборки и замены ЦПГ

Если появилась необходимость в приобретении новой цилиндропоршневой группы, то, учитывая немалую стоимость деталей, следует тщательно проверить изделия перед покупкой. Прежде всего, следует убедиться в том, что запчасть подходит к конкретной модели двигателя. Затем рекомендуется вскрыть упаковку и тщательно осмотреть детали ЦПГ. На изделиях не должно быть царапин, сколов и других механических повреждений. Следы ржавчины на гильзах цилиндра указывают на наличие ненадлежащих условий хранения, поэтому от такой покупки следует отказаться.

Желательно вооружиться точными весами и замерить массу поршней. Разница между изделиями не должна превышать 5 грамм. В противном случае, повышенный уровень вибрации будет обеспечен во время работы двигателя.

Если внешне осмотреть детали ЦПГ и взвесить поршни можно без особого труда, то определить некачественный металл обычному водителю очень непросто. По этой причине покупать цилиндропоршневую группу следует только в торговых организациях заслуживающих доверие.

Когда нужна замена цилиндро-поршневой группы ЦПГ

Стандартная ситуация замены цилиндропоршневой группы – это износ основных рабочих деталей. Сопровождаться данное явление будет следующими признаками:

  • Снижением мощности.
  • Повышенным расходом топлива и моторного масла.
  • Преждевременным выходом из строя свечей зажигания и/или форсунок.
  • Черным дымом из выхлопной трубы.

При наличии подобных технических неприятностей эксплуатация машина возможна, но эффективность работы двигателя внутреннего сгорания будет оставлять желать лучшего. Встречаются также ситуации, когда требуется экстренно заменить ЦПГ. Например, двигатель может заклинить в результате разрушения поршневых колец или стачивания пальцем стенки цилиндра в результате выхода стопора этой детали из канавки.

Если есть желание форсировать двигатель, то также можно приобрести и установить ЦПГ соответствующего типа. Монтаж больших по размеру цилиндров позволит без замены мотора существенно повысить мощность силового агрегата.

Цилиндро поршневая группа – определение износа, выбор, снятие и установка (видео)

Нестабильная работа двигателя внутреннего сгорания может быть вызвана неисправностью топливной системы, неправильной установкой момента зажигания и регулировкой газораспределительного механизма. Чтобы не потратить значительное количество времени на напрасный труд, следует убедиться в том, что ЦПГ на самом деле нуждается в замене.

Наиболее правильным способом определения износа цилиндропоршневой группы является измерение компрессии. Для выполнения этой работы достаточно выкрутить из цилиндра свечу зажигания и установить в отверстие трубку манометра. Затем следует прокрутить коленвал и зафиксировать максимальное значение давления. Если этот показатель существенно отличается от номинальных значений, то ЦПГ необходимо заменить.

Заметно увеличился расход моторного масла

Если масло приходится очень часто добавлять в двигатель, а видимых подтеков смазки под автомобилем не наблюдается, то для того чтобы убедить в том, что смазка расходуется по причине сгорания внутри цилиндра следует выкрутить свечу зажигания или форсунку и осмотреть деталь. При наличии значительно нагара на поверхности этих деталей, а также других признаков износа ЦПГ (снижение мощности, черный дым, расход топлива), потребуется разобрать двигатель и заменить изношенные поршни и цилиндры.

Тюнинг ЦПГ или стандарт

Если появляется необходимость в замене ЦПГ, то многие владельцы авто задумывают о том, чтобы вместо стандартных поршней и цилиндров установить детали большего объема. Увеличение литража двигателя повлечет за собой значительный прирост мощности, но у подобного подхода есть и существенные недостатки. Среди основных минусов установки тюнингованной ЦПГ следует отметить:

  • Цена модернизированных деталей выше.
  • Повышение рабочего объема двигателя приведет к увеличению расхода топлива.
  • Потребуется настройка карбюратора или системы прямого впрыска топлива.

Поршень в сборе

Несмотря на наличие недостатков, тюнинг ЦПГ имеют один существенный плюс – значительный прирост мощности.

Экстремальные условия обуславливают материал изготовления поршней

Поршень автомобиля эксплуатируется в условиях большого давления и высоких температур. Чтобы предупредить разрушение этой детали ее изготавливают из прочных, но легких металлических сплав.

Палец, служащий для соединения поршня с шатуном, также делают из стали с последующей цементацией и закалкой.

Замена ЦПГ

Если принято решение о замене цилиндропоршневой группы, то рекомендуется обратиться в специализированную мастерскую для проведения этой работы. При отсутствии опыта не следует осуществлять эту работу самостоятельно, кроме того, для снятия двигателя и его разборки может потребоваться специализированное оборудование и инструменты. При наличии опыта сложного ремонта ДВС, можно предпринять попытку восстановить силовые показатели мотора заменой ЦПГ.

Пошаговая последовательность замены цилиндропоршневой группы:

  • Установить автомобиль на смотровую яму.
  • Слить масло и охлаждающую жидкость.
  • Снять головку блока и навесное оборудование.
  • Снять поддон двигателя.
  • Открутить гайки шатунов.
  • Аккуратно выбить поршни с шатунами из цилиндров.
  • Снять гильзы цилиндров специальным съемником.
  • Установить новые гильзы, используя анаэробный клей фиксатор.
  • Установить новые поршни на шатуны, предварительно установив поршневые кольца.
  • Смазать вкладыши шатунов маслом.
  • Разместить шатуны на шейки коленвала и затянуть их рекомендованным моментом.
  • Установить новую прокладку головки цилиндров.
  • Установить головку блока цилиндров и затянуть резьбовые крепления.
  • Поставить поддон и прикрутить его к картеру двигателя.
  • Залить охлаждающую жидкость и масло.
  • Завести двигатель.

После замены ЦПГ, двигатель необходимо обкатать. При пробеге до 1000 км запрещено перегружать мотор, в том числе давать слишком большие обороты.

Цилиндропоршневая группа является важнейшей частью двигателя внутреннего сгорания, поэтому для обеспечения её сохранности важно при эксплуатации стараться не перегружать силовой агрегат, вовремя заливать только рекомендованные заводом-изготовителем сорта моторного масла, а также периодически менять топливный и воздушный фильтры.

Общее устройство и работа двигателя разновидности двигателей

Для будущего автомобильного механика, диагноста устройство двигателя автомобиля является одной из ключевых тем. Именно двигатель обеспечивает транспортное средство энергией, которая нужна для его движения.
Чаще всего механизм запуска устройства двигателя автомобиля возможен за счёт применения бензина или дизеля (дизельного топлива). Сгораемое внутри мотора топливо продуцирует тепло, что приводит к увеличению температуры газов внутри цилиндра двигателя и росту давления газов. Подвижные части двигателя под их влиянием вступают в работу, и тепловая энергия преображается в механическую.

В чем отличия оппозитного двигателя?

Фактически оппозитный двигатель является частным случаем V-образного. Его принцип работы основан на том, что угол развала цилиндров в таком моторе составляет 180°. Иными словами, пары цилиндров с поршнями лежат в горизонтальной плоскости. Поскольку поршни при работе такого двигателя движутся навстречу друг другу, они получили название «боксеры». Количество цилиндров в оппозитных моторах может быть от двух до двенадцати, при этом наибольшую популярность приобрели схемы с четырьмя и шестью цилиндрами.


Базовые части двигателя

Чтобы хорошо понимать устройство двигателя автомобиля, важно разбираться, что из себя представляет блок, цилиндр, поршень, поршневые кольца и шатун.

Металлическую основу мотора, остов называют блоком. Это корпусная деталь. Именно к блоку крепятся механизмы и отдельные части мотора и его систем.

Иногда можно встретиться с термином «блок», иногда – с терминами «блок двигателя», «блок цилиндров». Всё это одно и тоже. Блок двигателя берёт на себя серьёзные нагрузки. Поэтому контроль качества при его изготовлении должен быть предельно высок. Огромное внимание уделяется как материалу, так и уровню точности изготовления детали. Для производства используются высокоточные станки.

Раньше блоки изготавливали из перлитного чугуна с легирующими добавками. Популярность чугуна при изготовлении блоков легко объяснима тем, что материал износостоек, стабилен по своим свойствам, малочувствителен к перегреву, адаптивен к ремонту. Сейчас некоторые производители также выпускают блоки из алюминиевого, магниевого сплава. В этом случае есть выигрыш, связанный с весом мотора. Это очень актуально для блоков моторов спорткаров.

Цилиндр

Рядом с понятием «блок» стоит понятие «цилиндр». Под цилиндром подразумевается цилиндрическое отверстие, высверленное в блоке. То есть это рабочая камера объёмного вытеснения.

Уплотнение верхней стороны цилиндра обеспечивает головка. Именно в ней находятся:

  • Клапаны. Обеспечивают (в процессе открытия-закрытия) поступление в цилиндр воздуха, топливовоздушной смеси. Также среди функций клапанов обеспечивают очистку камеры сгорания цилиндра от отработавших (выхлопных) газов. Закрытие клапанов и удержание их в таком состоянии обеспечивают клапанные пружины.
  • Распредвалы (элементы привода клапанов). От них зависит то, как открываются клапаны, сколько времени они находятся в открытом состоянии
  • Механизмы привода клапанов. Функция идентична. И, как видно, из названия – это привод клапанов. Но сами механизмы могут быть разными. Всё зависит от мотора: например, бензиновый, дизельный.

Цилиндр играет роль направляющего для поршня.

Поршень, поршневые кольца и шатун

Цилиндрическая деталь или совокупность деталей, которая преобразует энергию горения топливо в механическую энергию, называется поршнем.

В проточках на боковой поверхности поршня вставлены поршневые кольца. Благодаря им между поршнем и стенкой цилиндра создаётся уплотнение. Задача поршневых колец заключается в создании барьера для перетекания из камеры сгорания в картер коленчатого вала газов.

Среди задач поршня:

  • Оказание силового воздействия на шатун.
  • Отвод тепла от камеры сгорания.
  • Герметизация камеры сгорания.

Подвижное соединение между поршнем и коленчатым валом обеспечивает шатун. Именно шатун передаёт силу движущегося поршня к вращающемуся коленчатому валу.

Коленчатый вал

Коленчатый вал – это важная составляющая кривошипно-шатунного механизма. Кривошип коленчатого вала создает возвратно-поступательное движение поршня через шатун (подвижный элемент), то есть возвратно-поступательное движение поршня превращается в крутящий момент. Физически коленвал расположен в нижней части двигателя. Снизу коленвал прикрыт картером – самой внушительной неподвижной и полой частью двигателя, закреплённой на блоке сбоку. Визуально картер напоминает поддон.

Автомобильные двигатели

Большинство двигателей автомобилей многоцилиндровые. Это значит при работе используется два или несколько цилиндров и два или несколько поршней.

Автопром выпускает машины с 2-; 3-; 4-; 5-; 6; 8-; 10- и 12-цилиндровыми двигателями. Чем больше цилиндров у мотора, тем больше возможностей для увеличения мощности двигателя. Если нужен двигатель, предназначенный для езды по бездорожью либо машина, развивающая сверхвысокие скорости, актуально именно устройство двигателя автомобиля, ориентированное на большое количество цилиндров. Устройство двигателя с большим количеством цилиндров обеспечивает отличную равномерность вращения коленчатого вала, ведь угол поворота коленчатого вала при 10, 12 цилиндрах – очень небольшой.

Но у 2-х цилиндровых двигателей есть другое преимущество: самые лучшие показатели топливной эффективности .

Что представляет собой V-образный двигатель?

С увеличением числа цилиндров в двигателе рядные конструкции стали менее удобными, а потому им на смену пришла V-образная компоновочная схема. Она предполагает установку цилиндров с поршнями попарно, друг напротив друга и под углом. Последний получил наименование угол развала и может варьироваться от 10° до 120° между осями. Количество цилиндров в таких агрегатах от шести до двенадцати, но это всегда четное число. Многие автопроизводители благодаря V-образной компоновочной схеме получили возможность экспериментировать с количеством цилиндров, увеличивая их число до двадцати четырех, но в серийном производстве таких автомобилей пока нет.

В зависимости от величины угла развала достигаются определенные характеристики двигателя. Так, например небольшой угол позволяет объединить в моторе достоинства и рядных, и V-образных моторов.

Среди плюсов V-образных моторов можно отметить:

  • компактность конструкции;
  • более длительный срок эксплуатации двигателя;
  • эффективная и динамичная работа на различных оборотах.

В числе недостатков:

  • конструкция такого агрегата более сложна, поскольку имеет две головки блока цилиндров;
  • высокая стоимость изготовления;
  • большие вибрации при работе;
  • сложности с балансировкой.

Циклы двигателя

Устройство двигателя автомобиля всегда рассматривается в купе с его рабочим циклом. Физически цикл – это периодически повторяющиеся процессы в каждом его цилиндре. Достаточно подробно разница между работой четырёхтактного и двухтактного двигателя отражена в нашей статье о двигателе внутреннего сгорания .

Сегодня мы остановимся на работе четырёхтактных моторов. Именно по четырёхтактному циклу работает большинство современных автодвигателей. Хотя сам принцип двигателя был изобретён Николаусом Отто в 19-м веке.

Поршень четырёхтактного двигателя совершает нисходящее и восходящее движение. Эта работа укладывается в один оборот коленчатого вала. При втором обороте коленчатого вала вновь повторяют эти движения.

1. Такт впуска (всасывания).

Поступление в цилиндр двигателя свежего заряда: воздуха- от дизельного мотора бензинового двигателя с прямым вспрыском или топливовоздушной смеси, от газово-топливного двигателя, мотора с распределенным или центральным впрыском топлива, или газо-топливные двигатели). В результате разрежения, созданного поршнем, перепад давления между давлением в цилиндре и давление окружающего воздуха, заряд втягивается непосредственно в цилиндр.

2. Такт сжатия. Шатун толкает поршень

. Поршень сжимает газообразный свежий заряд в цилиндре. Устройство дизельного двигателя настроено на то, чтобы температура сжатых газов должна достигла температуры воспламенения топлива. Если же речь идёт об устройстве газо-топливного, бензинового двигателя температура в конце такта сжатия достигать температуры воспламенения топлива не должна. Воспламенение производится от электроискрового разряда свечи зажигания.

3. Такт рабочего хода.

Температура газов в цилиндре снижается, энергия горящих газов преобразуется в механическую энергию.

Как устроен ДВС в автомобиле. «Просто и понятно».

Здравствуй, мой многоуважаемый читатель!
Как ты наверное понял, сейчас пойдёт речь об устройстве двигателя в автомобиле, но перед этим я хотел бы сказать, что я запускаю целый цикл статей, который включает в себя разбор всех устройств находящихся в автомобиле. Если интересно, то переходи на мой канал и узнай, как полностью устроен автомобиль.

Итак, начнём с простого. Двигатель внутреннего сгорания или же кратко ДВС

— это самый распространённый тип двигателя, использующийся в автомобилях и не только.

Основные механизмы двигателя,

которые характеризуют его производительность:


Цилиндр
– это самая важная часть силового агрегата, в автомобиле их как правило 4 и более.

• Свеча зажигания

— генерирует искру, которая воспламеняет топливно-воздушную смесь. Благодаря этому и происходит процесс сгорания топлива. На один цилиндр приходятся по одной свече.

• Клапаны впуска и выпуска

— клапан впуска открывается, когда нужно впустить топливо, а клапан выпуска открывается тогда, когда нужно выпустить отработанные газы.

Оба клапана крепко закрыты, когда в двигателе происходят такты сжатия и сгорания. Это обеспечивает необходимую полную герметичность.

— представляет собой металлическую деталь, которая имеет форму цилиндра. В двигателе выполняет движение вверх-вниз.


Поршневые кольца
— служат уплотнителями внешней кромки поршня и внутренней поверхности цилиндра. Также они имеют две цели:

— не дают попадать горючей смеси в картер ДВС из камеры сгорания в моменты сжатия и рабочего такта.

— не дают попасть маслу из картера в камеру сгорания, ведь там оно может воспламениться. Если автомобиль начинает сжигать масло, это говорит о том, что нужно менять поршневые кольца, которые уже не обеспечивают должного уплотнения.


Шатун
— служит соединительным элементом между поршнем и коленчатым валом.

• Коленчатый вал

— преобразует поступательные движения поршней во вращательные

• Распределительный вал

— основная деталь газораспределительного механизма (ГРМ) , служащего для синхронизации впуска или выпуска и тактов работы двигателя.

Принцип работы двигателя внутреннего сгорания:

Существует 4 такта работы ДВС:

— это процесс, происходящий в цилиндре за один ход поршня.

1 такт — впуск.

Открывается впускной клапан, топливо заполняет цилиндр, тем самым поршень сдвигается с верхней мёртвой точки вниз.

2 такт — сжатие.

Цилиндр начинает подниматься вверх, тем самым сжимая топливо, находящиеся в цилиндре до размеров камеры сгорания.

3 такт — рабочий ход.

После того, как топливо во втором такте сжалось до размеров камеры сгорания, свеча зажигания поджигает топливную смесь, тем самым заводя двигатель. Данный такт является самым ключевым, т.к. благодаря ему автомобиль начинает работать.

4 такт — выпуск.

После третьего такта, в цилиндре вырабатываются газы, тем самым опуская поршень до нижней мёртвой точки. В данном такте открывается выпускной клапан и газы выходят наружу.

Автомобиль от А до Я: устройство двигателя внутреннего сгорания

Новая рубрика, готовьтесь! Будет много познавательного текста с картинками.

Двигатель внутреннего сгорания (ДВС) является сердцем автомобиля. Главная особенность этих двигателей заключается в том, что воспламенение топлива происходит внутри камеры сгорания (КС), а не в сторонних внешних агрегатах.

В процессе работы тепловая энергия, выделяемая, вследствие, сгорания топлива, преобразуется в механическую.

По применяемому топливу

— легкие жидкие (газ, бензин)

— тяжелые жидкие (дизельное топливо)

— Бензиновые двигатели

Бывают двух типов: бензиновые карбюраторные и бензиновые инжекторные.

В первом случае смесеобразование (смешивания топлива с воздухом) происходит в карбюраторе или во впускном коллекторе с помощью форсунок. Далее, смесь попадает в цилиндр, сжимается и поджигается искрой от свечи.

Во втором же случае, топливо впрыскивается во впускной коллектор или в цилиндр с помощью инжекторов (распыляющие форсунки).

— Дизельные двигатели

Специальное дизельное топливо (ДТ) подается в определенный момент (не доходя до мертвых точек) в цилиндр под высоким давлением с помощью форсунки.

Движение поршня сжимает смесь еще сильнее, топливо нагревается, с последующим воспламенением горючей смеси (за счет высокого давления).

Такие двигатели характеризуются малыми оборотами и высоким крутящим моментом.

— Газовые двигатели

В качестве топлива, двигатель использует углеводороды. В основ, такие двигатели работают на пропане, но встречаются и другой газ в качестве топлива.

Главное отличие от других двигателей — высокая степень сжатия. Такие двигатели меньше изнашиваются благодаря тому, что топливо уже подается в газообразном состоянии. Также, экономичность газовых двигателей на лицо — газ дешевле бензина.

Стоит отметить и экологичность — отсутствует дымность двигателя.

По способу воспламенения

— от искры (бензиновые)

— от сжатия (дизельные)

По числу и расположению цилиндров

— Рядный двигатель

Наиболее распространенная компоновка, цилиндры расположены в один ряд перпендикулярно коленчатому валу. Такие двигатели просты в конструкции, но при большом количестве цилиндров — увеличивается размер двигателя в длину.

— V-образный

Для уменьшения длины агрегата, цилиндры располагают под углом от 60 до 120 градусов, при этом, продольные оси цилиндров совпадают с продольной осью коленчатого вала.

Двигатель получается довольно небольших размеров в продольном отношении (короткий).

Из минусов: довольно большая ширина двигатели и раздельные головки блока, что приводит к увеличению себестоимости при изготовлении.

— Оппозитный

Горизонтально-оппозитный двигатель имеет меньшие габариты по высоте, что позволит снизить центр тяжести всего автомобиля. Из плюсов можно выделить: компактность, симметричность компоновки.

— VR-образный

За счет 6-ти цилиндров, расположенных под углом 150 градусов, образуется весьма компактный (узкий и короткий) двигатель. А также, этот двигатель имеет всего одну головку блока.

— W-образный

В этих двигателях соединены два ряда цилиндров в VR-исполнении.

Угол расположения цилиндров равен — 150 градусам, а сами ряды — под углом 720 градусов.

Штатный автомобильный двигатель состоит из 2-х механизмов и 5-ти систем.

Как работает синхронный двигатель

Принцип действия синхронного двигателя основывается на взаимном влиянии магнитных полей якоря и полюсов индуктора. При обращенной конструкции агрегата расположение якоря и индуктора выполнено наоборот, то есть, первый расположен на роторе, а другой – на статоре. Такой вариант используют криогенные синхронные машины, у которых в состав обмоток возбуждения входят материалы со свойствами сверхпроводимости.

При запуске двигателя его разгоняют до частоты близкой к той, с которой в зазоре вращается магнитное поле. Только после этого он переходит в синхронный режим. В данной ситуации происходит пересечение магнитных полей якоря и индуктора. Этот момент получил название входа в синхронизацию.

При разгоне используется состояние асинхронного режима, когда происходит замыкание обмоток индуктора с помощью реостата или короткозамкнутым путем, подобно асинхронным машинам. Для того, чтобы осуществлять запуск в таком режиме, ротор оснащается короткозамкнутой обмоткой, которая одновременно является успокоительной обмоткой, способной устранить раскачивание ротора во время синхронизации. После того, как скорость становится близко к номинальной, в индуктор подается постоянный ток.

Таким образом, синхронный двигатель это не только двигатель, но и своеобразный генератор, поскольку у них одинаковое конструктивное исполнение. Схема работы двигателя будет следующей. Обмотка якоря подключается к трехфазному переменному току, а к обмотке возбуждения от постороннего источника подается постоянный ток. Вращающееся магнитное поле, созданное трехфазной обмоткой и поле, созданное обмоткой возбуждения, взаимодействуют между собой. Это вызывает появление электромагнитного момента, приводящего ротор во вращающееся состояние.

Для двигателей, где установлены постоянные магниты, применяются специальные внешние разгонные двигатели. В отличие от асинхронных устройств, разгон ротора в синхронном двигателе должен достигнуть частоты вращения магнитного поля. Это связано с подачей в обмотку ротора тока из постороннего источника, а не индуцируется в нем под действием магнитного поля статора, следовательно, на него не влияет частота вращения вала. В результате, синхронный двигатель переменного тока приобретает постоянную частоту вращения ротора вне зависимости от нагрузки. Специфический принцип работы этих устройств оказал влияние на их пуск и регулировку частоты вращения.

Системы

  • охлаждение
  • смазка
  • питание
  • зажигание
  • выпуска отработавших газов

Рассмотрим механизмы двигателя подробнее.

Кривошипно-шатунный механизм

Данный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

В свою очередь, кривошипно-шатунный механизм состоит из:

1) блока цилиндров с картером;

2) головки блока цилиндра;

3) поддона картера двигателя;

6) коленчатого вала;

Блок цилиндров

Представляет собой цельноотлитую деталь, объединяющей цилиндры двигателя. На нем располагаются опорные поверхности для установки коленчатого вала, а к верхней части, как правило, крепится головка блока цилиндров.

Цилиндры в блоке делаются либо отлитыми заедино с блоком, либо представляют собой отдельные сменные втулки.

Также, блок отрабатывает еще, не менее важную, функцию — по отверстия в блоке под давлением подается масло для смазки.

Внутренние стенки цилиндров служат направляющими для поршней во время их перемещения.

Поршень

Цилиндрическая деталь, которая совершает возвратно поступательное движение внутри цилиндра.

Поршень состоит из: днища, уплотняющей части, направляющей части (юбка).

Форма днища зависит от возложенных на поршень задач. Вогнутое днище позволяет создать более рациональную камеру сгорания. Выгнутое — делает поршень прочнее, но уменьшается рациональность камеры сгорания.

Днище с уплотняющей частью образуют головку поршня. В уплотняющей части располагаются маслосъемные и компрессионные кольца.

Юбка поршня служит для направления движения в цилиндре.

Охлаждение

В задачу этой системы входит поддержание определенной температуры работающего агрегата. Дело в том, что сгорание в цилиндрах смеси происходит с выделением теплоты. Узлы и детали мотора нагреваются, и им необходимо постоянно охлаждаться, чтобы работать в штатном режиме.

Наиболее распространенными являются жидкостная и воздушная системы.

Для того чтобы двигатель охлаждался постоянно, необходим теплообменник. В моторах с жидкостным вариантом его роль исполняет радиатор, который состоит из множества трубок для ее перемещения и отдачи тепла стенкам. Отвод еще больше увеличивается через вентилятор, который установлен рядом с радиатором.

В приборах с воздушным охлаждением используется оребрение поверхностей самых нагретых элементов, из-за чего площадь теплообмена существенно возрастает.

Эта система охлаждения является низкоэффективной, а поэтому на современных автомобилях она устанавливается редко. В основном ее используют на мотоциклах и на небольших ДВС, для которых не нужна тяжелая работа.

Газораспределительный механизм

— впускных и выпускных клапанов.

Распределительный вал

Как правило (в современных автомобилях) расположен в верхней части головки цилиндров.

Неотъемлемой частью распредвала являются его кулачки. Их ровно столько, сколько впускных и выпускных клапанов. Эти кулачки надавливая на рычаг толкателя клапана, открывают его, а «сбегая» с рычага, клапан закрывается от действия возвратной пружины.

Клапана

Клапан состоит из плоской шляпки (головки) и стержня. Причем, диаметр головки впускного клапана делают несколько больше, чем диаметр головки выпускного клапана (это делается для лучшего наполнения топливом цилиндров).

Утоли мои печали: как впрыск воды повышает мощность мотора

Уже более ста лет автомобильные инженеры работают над повышением отдачи мотора. Поначалу все было просто: больше литраж, больше цилиндров, больше мощности! Но довольно быстро стало понятно, что replacement for displacement все-таки необходим: в ход пошли компрессоры, турбины, усложнение ГРМ с многоклапанными конструкциями и регулируемыми фазами, распределенный и непосредственный впрыск, облегчение поршневой группы… Теперь, когда к ДВС все чаще в компанию стали добавлять электромоторы, кажется, что предел форсирования обычного мотора достигнут. Но нет – вы забыли про впрыск воды! Разберемся, зачем это делается и почему до сих пор не применяется в массовом автомобилестроении.

О быватель при упоминании системы впрыска воды в цилиндр скептически хмыкнет: если двигатель автомобиля получит гидроудар, ничего хорошего из этого не выйдет. Но одно дело, когда при проезде глубокой лужи в двигатель через впускной тракт попадает большое количество воды, которую пытается сжать поршень – это приводит к разрушению шатунно-поршневой группы… Совсем другое – точечный впрыск специальной смеси в камеру сгорания.

Как это работает?

Система впрыска воды чаще всего используется на высокофорсированных двигателях для улучшения их характеристик. Откуда получается дополнительная мощность? Существует сразу несколько вариаций системы, различающиеся только точками установки. Для этого во впускном коллекторе устанавливается специальная форсунка, подающая во впускной тракт водометанольную смесь, которая смешивается с топливной смесью, подаваемой в камеру сгорания.

Почему именно смесь воды со спиртом? Во-первых, такая жидкость замерзает при более низких температурах, а во-вторых, вода со спиртом обладает лучшим рассеиванием, из-за чего образуется более равномерная смесь и уменьшается температура во впускном коллекторе. За счет мелкодисперсных капель смесь охлаждается, что позволяет повысить степень сжатия, а также уменьшить скорость горения смеси в цилиндрах, а это снижает возможность детонации. Также снижение температуры горения топливно-водяной смеси влияет на химические процессы в камере сгорания, что уменьшает концентрацию вредных выбросов азота и углекислых газов.

Казалось бы, одни плюсы! Но, как и все в мире, идеальных вещей не бывает. В отработавших газах увеличивается концентрация несгоревших углеводородов, что немного увеличивает расход топлива автомобиля. На малой скорости или полностью открытой дроссельной заслонке двигатель может работать неустойчиво.

Одной из ключевых причин является неравномерное распределение жидкости по цилиндрам – в некоторых из них неизбежно создается обедненная смесь. Обычно такую проблему можно решить, установив систему с индивидуальными форсунками на каждый из цилиндров, управляемых компьютером.

Поршни 12-ти цилиндрового двигателя

Кроме того, пользователи часто забывают, что в систему необходимо заливать только дистиллированную воду. Ведь растворенные в обычной воде соли могут привести к образованию нагара в камерах сгорания, и, как следствие, уменьшить ресурс двигателя. Посмотрите на накипь в чайнике – вы же не хотите, чтобы подобная гадость была и внутри цилиндров?

С чего все началось?

Впервые в мировой практике впрыск воды в цилиндры двигателя применил венгерский инженер Bcnki в начале XX века. Еще спустя несколько лет профессор Хопкинсон из Англии успешно применил экспериментальную систему впрыска воды для улучшения характеристик промышленных двигателей. А наибольший вклад внес Гарри Рикардо, создатель одноименной марки, занимающейся выпуском автомобильных комплектующих. На его счету – многочисленные исследования, несколько патентов и даже монография High-Speed Internal Combustion Engine, в которых подробно описаны методы и испытания двигателей с впрыском воды.

В результате всех испытаний Рикардо представил двигатель, оснащенный системой впрыска смеси воды с метанолом, благодаря которой удалось добиться увеличения характеристик мотора почти что двукратно! Широкое применение водометанольные смеси нашли во время Второй мировой войны. Первую скрипку сыграли авиаторы, которые в погоне за скоростями и высотой искали любые ухищрения, чтобы выжать максимум мощности из поршневых двигателей, которых к концу войны все равно заменили реактивной авиацией.

В 1942 году на вооружение ВВС Германии поступил иcтребитель Focke-Wulf 190 D-9, оснащенный системой впрыска водометанольной смеси во время форсажа. Причем он был не единственным в своем роде в Люфтваффе. Похожей системой впрыска оснащались двигатели Daimler-Benz 605 и BMW 801D для Messerschmidt Bf-109, а также Junkers Jumo 213A-1. Стоит отметить, что авиационные двигатели того времени уже имели системы турбонаддува, и впрыск воды, по сути, играл роль интеркулера. Водометанольная смесь MW-50 впрыскивалась во впускной тракт авиационного двигателя, где смешивалась с топливной смесью, устремляясь в камеру сгорания. В результате контакта с раскаленными стенками цилиндров вода превращалась в пар, который, расширяясь, создавал в цилиндре избыточное давление, а предварительное охлаждение топливной смеси на впуске способствовало увеличению ее объема в цилиндре и улучшало эффективность сгорания топлива. В результате мощность немецких моторов кратковременно увеличивалась на 20-30 процентов, что давало последним преимущества по набору высоты и максимальной скорости.

На фото: Messerschmidt Bf-109

На фото: Messerschmitt Bf-109

Собственные системы впрыска воды разработали и союзники. Так, американская компания Pratt & Whitney в своем двигателе J57 для бомбардировщика В-29 установила похожую систему для повышения характеристик двигателя на малых и средних высотах. Похожую систему с успехом применяли и на истребителях. В 1943 году по приказу НКАП моторный завод №45 должен был разработать документацию на советскую систему впрыска воды для двигателей АМ-38Ф. Опытная партия из пяти самолетов Ил-2, оснащенных двигателем с впрыском воды, была построена на заводе №18, однако после испытаний система была признана слишком дорогой и сложной в настройке.

На фото: ИЛ-2

На каких автомобилях применялось?

С развитием в конце войны реактивных двигателей работы по увеличению мощности поршневых агрегатов были практически свернуты, и богатый опыт форсировки отошел на задний план. Но о системах вспомнили автомобильные компании. Первым впрыск водометанольной смеси на серийном автомобиле стали применять американцы из General Motors, которым такая система оказалась нужна для повышения детонационной стойкости турбомотора Oldsmobile F-85 Jetfire. Что из этого получилось, мы уже рассказывали вам ранее.

На фото: Oldsmobile F-85 Jetfire Hardtop Coupe 1963

На фото: Oldsmobile F-85 Jetfire Hardtop Coupe 1963

Еще одним производителем, вспомнившем о полезных свойствах водометанольной смеси, стал шведский Saab, где до начала 1980-х годов устанавливали систему впрыска воды на Saab 99 Turbo S. Правда, с появлением интеркулеров, охлаждающих воздух во впускном тракте, такие системы на серийных автомобилях плавно сошли на нет, но не были забыты в автоспорте.

Saab 99 Turbo Combi Coupe

В 1983 году команды Формулы-1 Renault и Ferrari установили на свои болиды системы впрыска воды, позволившие итальянцам в итоге занять первое место в кубке конструкторов. На машинах были установлены баки объемом 12 литров для хранения смеси спирта и воды, регулятор давления и водяной насос, однако впоследствии подобные системы были запрещены регламентом.

На фото: Renault RE40

На фото: Renault RE40 ‘1983

Похожие системы пытались внедрить в середине 1990-х в WRC, но и там они получили запрет через недолгое время, как и на ле-мановских спортпротипах. Очень широкое распространение баки с водой получили у американских гонщиков на ¼ мили. Могучие американские «восьмерки» дрегстеров, снабженные механическими нагнетателями, требовали серьезного охлаждения, а интеркулеры еще не получили широкое распространение. Тогда некоторые светлые головы и вспомнили о полезных свойствах водно-спиртовой смеси, подаваемой в двигатель. Так, суперкар Porsche 911, доработанный фирмой 9ff, в 2005 году установил рекорд скорости 388 км/ч для автомобилей, официально сертифицированных для дорог общего пользования. Его оппозитная «шестерка» с двумя турбокомпрессорами на пару с обычными интеркулерами была также оснащена системой впрыска воды.

Впрыск воды, наши дни

На некоторое время интерес к системам от производителей угас, но в 2015 году про технологии вспомнили мотористы BMW, решившие применить впрыск воды уже не для повышения мощности, а для снижения расхода бензина. Первым автомобилем, опробовавшем систему впрыска воды с метанолом, стал пейс-кар BMW M4, участвующий в гонках MotoGP. Но если там была установлена обычная форсунка, подающая смесь во впускной коллектор, то на опытном трехцилиндровом турбомоторе рабочим объемом 1,5 литра система стала более продвинутой.

Вода смешивается с топливной смесью с помощью топливного насоса высокого давления Bosch, срабатывающему только на оборотах мотора свыше 4 000. Водно-топливная смесь через форсунку впрыскивается в саму камеру сгорания. В результате мощность 201-сильного двигателя увеличилась на 14 л. с., возросла детонационная стойкость двигателя, что позволило поднять степень сжатия с 9.5:1 до 11,0:1 и в целом улучшить отдачу мотора на низких и средних оборотах. Объем водяного бака с подогревом – 7 литров, а в обычных условиях автомобиль расходует около 1,5 литра воды на 100 км пути, что означает необходимость пополнения системы почти каждые 500 километров.

BMW M4 Coupé MotoGP Safety Car (F82)

На фото: BMW M4 Coupé MotoGP Safety Car (F82) ‘2015

Однако инженеры BMW предусмотрели и другие способы добычи воды: при работе кондиционера конденсат из системы автоматически сливается в бак. Все эти ухищрения позволяют экономить почти 8% топлива на 100 км пути в смешанном цикле, а особенно эффективно система может работать в паре с гибридным приводом. Правда, о таких гибридах в БМВ пока молчат.

Серийный выпуск двигателей с водометанольной системой впрыска по планам должен начаться уже в конце этого года, причем поставляться такие БМВ будут и в Россию. На наше счастье, из-за повышенной стойкости к детонации эти машины будут менее требовательны к октановому числу – заправляться можно будет обычным Аи-95.

Можно ли поставить такую систему себе на машину?

Если очень хочется, то можно. Начитавшись интернета, умельцы делают самодельные системы, используя в качестве элементов капельницы, медицинские шприцы и прочие изделия, устанавливают во впускном коллекторе за дроссельной заслонкой и. такие системы работают.

Впрочем, все плюсы от повышенной мощности или крутящего момента перечеркиваются одним жирным минусом. Ведь по сути такой самопал просто льет огромное количество воды в коллектор, не распыляя ее, в результате чего водяная взвесь поступает во все цилиндры неравномерно. О последствиях мы уже говорили выше – в некоторых цилиндрах воды больше, чем в остальных, что приводит к обеднению смеси в отдельных цилиндрах и неравномерную работу мотора. В худшем случае количество воды, поступаемой в цилиндр, так велико, что приводит к шансу получить тот самый пресловутый гидроудар.

Для тех, у кого есть чуть больше денег, продавцы тюнинг-аксессуаров предлагают комплект из насоса высокого (около 5-10 бар) давления, электронного блока управления насосом, форсунок для впрыска смеси и, естественно, бачка для воды. В самых дорогих системах применяется клапан, регулирующий давление и количество поступаемой воды.

Несмотря на кажущуюся простоту, и здесь возникают определенные сложности. Впрыск воды происходит только на определенных режимах работы двигателя, обычно подобные системы работают при оборотах двигателя свыше 3 000 об/мин. К тому же система почти не контролирует подачу смеси, а только подает команду на включение/выключение насоса. Основным ограничением на количество впрыскиваемой воды становится только производительность самой форсунки.

Главными спецами по системам впрыска воды для автомобильных двигателей были признаны конструкторы британской фирмы Aquamist, в 1990-е поставлявшие комплекты для болидов WRC, пока их не запретили. И цена на тюнинг-киты колеблется в районе 3 000 долларов. В общем, пока впрыск воды остается довольно экзотическим, недешевым и, положа руку на сердце, не таким уж эффективным средством форсировки.

Источник https://proavtomaster.com/remont/5-osnovnyh-detaley-sostavlyayuschih-tspg-dvigatelya

Источник https://avtosotka.ru/motor/kak-rabotaet-dvigatel-avtomobilya.html

Источник https://www.kolesa.ru/article/utoli-moi-pechali-kak-vprysk-vody-povyshaet-moshhnost-motora

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: