Длинноходные и короткоходные моторы – в чем разница, и какие лучше? – автомобильный журнал

Содержание

Длинноходные и короткоходные моторы – в чем разница, и какие лучше?

Признайтесь, что вы часто видели в тест-драйвах фразы про «типично короткоходный характер мотора» и не вполне понимали, о чем идет речь. Сегодня мы наконец расскажем, что такое коротко- и длинноходные моторы, в чем разница подходов к проектированию двигателей, и почему сейчас можно уверенно сказать, что «длинноходники» все-таки победили.

Средняя скорость, и какой она бывает

Д ля понимания вопроса придется вспомнить немного о конструкции ДВС и принципах его работы. Вы наверняка знаете, что в основе любой конструкции двигателя внутреннего сгорания лежит воздействие расширяющихся газов на поршень. Поршни могут быть любой формы и размеров, но у любого поршня есть такой параметр, как средняя скорость, и от нее зависит очень и очень многое.

Средняя скорость поршня – это величина, которую можно определить по формуле Vp = Sn/30, где S – ход поршня, м; n – частота вращения, мин-1. И именно она определяет степень возможного форсирования двигателя по оборотам, ускорения элементов шатунно-поршневой группы во время работы, а также его механический КПД.

От средней скорости поршня зависят нагрузки на стенку поршня, на поршневой палец, шатун и коленвал. Причем зависимость эта квадратичная: с увеличением скорости (Vp) в два раза нагрузки увеличиваются в четыре раза, а если в три – то в девять раз.

Эксперименты инженеров-мотористов уже очень давно доказали, что классическая конструкция шатунно-поршневой группы выдерживает максимальную скорость порядка 17-23 м/с. И чем выше эта величина, тем скорее изнашивается мотор. Увеличить скорость поршня практически невозможно – самые облегченные гоночные двигатели Формулы-1 имели скорость порядка 23-25 м/с, и это безумно много. Этого удалось достичь только потому, что «формульные» моторы рассчитаны на очень короткую эксплуатацию – от них не требуется «ходить» по 100 000 км.

От теории – к практике. Как известно, мощность мотора – это производная от крутящего момента, помноженного на обороты (об этом я писал большую статью с таблицами и графиками). То есть, если мы хотим получить больше мощности, то надо увеличивать обороты. А так как скорость поршня ограничена, то у нас не остается другого выбора, кроме как уменьшить его ход. Чем меньше расстояние нужно пройти поршню за один оборот, тем меньше может быть его скорость.

V8 Car engine. Concept of modern car engine. High resolution 3d render

Короткоходные, длинноходные и «квадратные» моторы

Казалось бы, выше мы только что озвучили два прекрасных аргумента для максимального уменьшения хода поршня. К тому же, чем меньше ход поршня, тем больше диаметр цилиндра при том же объеме, и тем более крупные клапаны можно поставить. Улучшается газообмен, а значит, и работа мотора в целом… Но, как оказалось, безмерно уменьшать ход тоже нельзя.

Чем меньше ход, тем больше должен быть диаметр цилиндра, если мы хотим сохранить объем. А вот форма камеры сгорания с ростом диаметра цилиндра ухудшается, соотношение объема камеры и площади неизбежно растет, увеличивается коэффициент остаточных газов, возрастают тепловые потери, ухудшается сгорание топлива… КПД падает, склонность к детонации повышается, ухудшаются экономичность и экологичность.

При уменьшении хода поршня снижается, к тому же, и диаметр кривошипа коленчатого вала, а значит, уменьшается крутящий момент мотора. Ухудшаются и массогабаритные параметры двигателей – они становятся куда крупнее в горизонтальном сечении. К тому же для сохранения рабочего объема приходится увеличивать число цилиндров, а это уже ведет к резкому повышению сложности конструкции. В общем, нужен был компромисс.

Основные задачи проектирования моторов решили к 60-м годам прошлого века, тогда же нащупали пределы прочности конструкции по средней скорости поршня. Стало ясно, что оптимальные параметры мощности, общего КПД и габаритов у атмосферного мотора получаются в том случае, если диаметр цилиндра равен ходу поршня или чуть меньше.

На фото: двигатель Nissan Qashqai

Если они совпадают, то такие моторы еще называют «квадратными». Моторы, у которых диаметр цилиндра все-таки больше хода поршня, называют короткоходными, а те, у которых он меньше, – длинноходными.

Внимательный читатель скажет: стоп, а откуда вообще взялись короткоходные моторы, если эксперименты доказали, что эффективнее всего «квадратные» или чуть-чуть длинноходные?! Все просто: короткоходники получили распространение в автоспорте. Там расход топлива и приемистость на низких оборотах не сильно «делали погоду», и можно было пожертвовать КПД ради достижения большей мощности на высоких оборотах при сохранении малого рабочего объема.

Для получения лучшей топливной экономичности, тяги и чистоты выхлопа, наоборот, ход поршня увеличивали, жертвуя оборотами и максимальной мощностью. Длинноходные моторы применяли там, где были нужны тяга и экономичность.

Тем временем, к 80-м годам среднюю скорость поршня в серийных моторах довели до предела в 18 м/с, дальше ее увеличивать не получалось. Такая ситуация сохранилась до 90-х, когда требования к массогабаритным и экономическим характеристикам моторов резко возросли.

Длинноходный прогресс

90-е годы – это в первую очередь массовое внедрение новых экологических норм, резкое повышение массы кузова автомобилей из-за новых требований по пассивной безопасности, а заодно и возросшие требования к габаритам и экономичности силовых агрегатов. Машины становились просторнее изнутри и безопаснее во всех смыслах.

А двигателям приходилось поспевать за прогрессом. Массовый переход на многоклапанные головки блоков цилиндров повысил мощность и сделал моторы чище. Средний рабочий объем мотора постарались уменьшить и тем самым выиграть в расходе топлива и габаритах. Прогресс в области конструирования поршневой группы позволил уменьшить высоту поршня и увеличить длину шатуна, сделав больше механический КПД мотора.

Следовательно, стало возможно перейти к более длинноходным конструкциям, которые при том же рабочем объеме были компактнее, имели больший крутящий момент и к тому же стали экономичнее. Облегчение поршневой группы позволило снизить нагрузки на нее при высоких оборотах, а массовое внедрение турбонаддува и регулируемого впуска – еще и выиграть в максимальной мощности и тяге. Умеренно длинноходные моторы от этого только выиграли.

В 2000-е в стане двигателей объемом от 2 литров наметился перелом в переходе от «квадратов» к длинноходным конструкциям. И вот вам несколько примеров. При рабочем объеме 2 литра моторы VW серии ЕА888 (стоят на множестве моделей концерна от Skoda Octavia до Audi A5) имеют ход поршня 92,8 мм при диаметре цилиндра 82,5, а 2-литровые моторы Renault серии F4R (более всего известный по Duster) – 93 мм и 82,7 соответственно. Моторы Toyota объемом 1,8 л серии 1ZZ (Corolla, Avensis и др.) – еще более длинноходные, их размерность 91,5х79.

На фото: двигатель Volkswagen Golf GTI

Рабочие обороты таких двигателей заметно уменьшились, особенно у турбонаддувных, снизились и обороты максимальной мощности. А значит и снижение механического КПД уже не столь важно, зато преимущества налицо. По габаритам моторы лишь немного больше «классических» 1,6 из недавнего прошлого, а по тяге и расходу топлива намного превосходят однообъемных предшественников.

В современных моторах пытаются сочетать высокую эффективность работы длинноходных моторов и повышенный механический КПД короткоходных. Так, в ультрасовременном (но тем не менее уже снимаемом с производства) моторе BMW серии N20В20 (стоят на 1-й, 3-й, 5-й сериях, X1 и X3) применяется несимметричная поршневая группа, в которой ось коленчатого вала и ось поршневых пальцев смещены относительно оси цилиндров. Тут используются регулируемый маслонасос, плазменное напыление цилиндров, бездроссельный впуск и прочие технические «фокусы» для снижения механических потерь и сопротивления впуска. Размерность этого длинноходного мотора 90,1х84, и никто не скажет, что у него плохие характеристики хоть в чем-то, кроме надежности.

Дизели

Дизельные моторы, которые в силу особенностей рабочего цикла обычно являются длинноходными и низкооборотными, выиграли вдвойне. Внедрение турбонаддува резко подняло крутящий момент и позволило снизить степень сжатия, а прогресс топливной аппаратуры и поршневой группы – еще и увеличить рабочие обороты.

На фото: двигатель Volkswagen Golf TDI

В итоге дизели превзошли по литровой мощности атмосферные бензиновые моторы, а по крутящему моменту – бензиновые моторы с наддувом. Так, двигатели серии N57 (3-я, 5-я, 7-я серии, X3, X5 и др.) от BMW при диаметре цилиндра 84 мм и ходе поршня 90 мм имеют рабочий объем 2,993 литра, мощность до 381 л. с. и 740 Нм крутящего момента. Средняя скорость поршня при этом – 13,2 метра в секунду.

Оборотная сторона

Конечно же, беспроигрышных лотерей не бывает, и чудесной высокой отдачи добились ценой надежности – тут нет никакого секрета. Старый принцип актуален и поныне: у «сильно длинноходных» моторов высокая средняя скорость поршня увеличивает нагрузку на стенки цилиндра.

Конечно же, материалы становятся лучше, но при сравнении двигателей одной серии с разными параметрами хода поршня и диаметра цилиндра заметно, что длинноходные модели более склонны к износу поршневых колец и задирам цилиндров. И ресурс поршневой у них оказывается существенно ниже, чем у более «квадратных» собратьев.

А вот при сравнении разных моторов все далеко не так однозначно. На моторах с алюминиевым блоком и алюсиловым покрытием стараются снизить нагрузку на стенку цилиндра в том числе и снижением хода поршня, но, как правило, все равно ресурс получается меньше, чем у моторов с чугунными гильзами или блоком.

Мотор Renault-Nissan серии M4R (Qashqai, Fluence и др.), который пришел на смену уже упомянутому чугунному F4R, имеет ход поршня 90,1 мм при диаметре цилиндра 84 – он все еще длинноходный, но ход поршня значительно сократился. Габариты при этом не увеличиваются за счет более тонкостенной конструкции блока цилиндров.

На фото: двигатель Renault Latitude

Современные двигатели не нуждаются в высоких оборотах для достижения высокой мощности, а экономичность и экологичность становятся все важнее. Пусть даже в реальной эксплуатации заявленные характеристики и не подтверждаются… К тому же, можно путем усложнения конструкции обойти множество ограничений, которые десятки лет заставляли делать выбор между мощностью и экономичностью моторов.

Короткоходные «крутильные» моторы просто вымирают, им нет места в новом мире. Даже в Формуле-1 отказались от экстремальных конструкций с рабочими оборотами за 19 тысяч и соотношением диаметра цилиндра и хода поршня больше 2,4 к 1. Конечно, для фанатов и гоночных серий выпуск подобной техники сохранится, но в практическом плане смысла в ней уже нет. Победа длинноходных конструкций, за редким исключением, фактически состоялась.

Одним из немногих «оплотов короткоходности» до недавнего времени оставались атмосферные V6 и V8 от Mercedes-Benz. Так, моторы серии М272 (E-Klasse W211, M-Class W164 и др.) – откровенно короткоходные во всех вариантах исполнения. Например, у 3-литровой версии соотношение хода к диаметру будет 82,1 к 88. Как и их предки в лице М104, так и их наследники вплоть до М276, они были олицетворением успешных короткоходных моторов. Компания не стремилась к излишней компактности моторов, места было достаточно, а момента у двигателей объемом 3-3,5 литра и так хватало с запасом. Городить длинноходную конструкцию не было смысла.

Но новое поколение двигателей AMG серий М133/М176 с наддувом стали длинноходными – 83х92 мм, как и перспективная рядная шестерка 3,0 с наддувом серии М256 – 83х92,4 мм.

Mercedes-AMG CLA 45 Shooting Brake (X 117) 2014

На фото: двигатель Mercedes-AMG CLA 45 4MATIC

Из «могикан» остаются разве что моторы GM, их блок V8 6,2 Vortec/L86/LT1 все еще не стремится к компактности, имея размерность 103,25х92 мм, и даже компрессорная версия LT4 сохраняет ту же размерность блока. Но это, скорее всего, тоже ненадолго.

Конец спорам

Даунсайз, наддув, непосредственный впрыск, гладкая моментная характеристика, высокий крутящий момент, регулируемый ГРМ и продвинутые трансмиссии сотворили маленькое чудо. Споры «длинноходный или короткоходный» уже более не актуальны.

Моторы вдруг прибавили в литровой мощности до границ, ранее считавшихся возможными только для специально подготовленных гоночных моторов. Увидев цифры в 120-150 л. с. с литра объема, мы уже не удивляемся, и даже 200 л. с. на литр кажутся вполне реальными, а «смешной» паспортный расход топлива для мощной и тяжелой машины кажется вполне реальным. Дизельные двигатели из «гадких утят» превратились в прекрасных лебедей с литровой мощностью даже большей, чем у бензиновых двигателей.

Во многом все это, плюс уменьшение габаритов и веса моторов, стало возможным благодаря длинноходной конструкции. Окончательно оформившийся тренд вряд ли переломится, особенно с учетом прогнозируемого вытеснения ДВС электромоторами и разнообразными «удлинителями дистанции».

На что влияет количество цилиндров в двигателе?

Наименьшим отношением поверхности к заданному объёму обладает сфера. Тепло в окружающее пространство отводится поверхностью, поэтому масса, имеющая форму шара, охлаждается в наименьшей степени. Эти очевидные соотношения учитываются при проектировании камеры сгорания. Следует, однако, иметь в виду геометрическое подобие деталей двигателей разных размеров.

Как известно, объём сферы равен 4/3∙π∙R3, а её поверхность — 4∙π∙R2, и, таким образом, объём с ростом диаметра увеличивается быстрее, чем поверхность, и, следовательно, сфера большего диаметра будет иметь меньшую величину отношения поверхности к объёму.

Если поверхности сферы разного диаметра имеют одинаковые перепады температур и одинаковые коэффициенты теплоотдачи α, то большая сфера будет охлаждаться медленнее.

Двигатели геометрически подобны, когда они имеют одинаковую конструкцию, но отличаются размерами. Если первый двигатель имеет диаметр цилиндра, например, равный единице, а у второго двигателя он в 2 раза больше, то все линейные размеры второго двигателя будут в 2 раза, поверхности — в 4 раза, а объёмы — в 8 раз больше, чем у первого двигателя. Полного геометрического подобия достичь, однако, не удаётся, так как размеры, например, свечей зажигания и топливных форсунок одинаковы у двигателей с разными размерами диаметра цилиндра.

Из геометрического подобия можно сделать тот вывод, что больший по размерам цилиндр имеет и более приемлемое отношение поверхности к объёму, поэтому его тепловые потери при охлаждении поверхности в одинаковых условиях будут меньше.

При определении мощности нужно, однако, учитывать некоторые ограничивающие факторы. Мощность двигателя зависит не только от размеров, т. е. объёма цилиндров двигателя, но и от частоты его вращения, а также среднего эффективного давления. Частота вращения двигателя ограничена максимальной средней скоростью поршня, массой и совершенством конструкции кривошипно-шатунного механизма. Максимальные средние скорости поршня бензиновых двигателей лежат в пределах 10—22 м/с. У двигателей легковых автомобилей максимальное значение средней скорости поршня достигает 15 м/с, а значения величины среднего эффективного давления при полной нагрузке близки к 1 МПа.

Рабочий объём двигателя и его размеры определяют не только геометрические факторы. Например, толщина стенок задана технологией, а не нагрузкой на них. Теплопередача через стенки зависит не от их толщины, а от теплопроводности их материала, коэффициентов теплоотдачи на поверхностях стенок, перепада температур и т. д. Колебания давления газа в трубопроводах распространяются со скоростью звука независимо от размеров двигателя, зазоры в подшипниках определяются свойствами масляной пленки и т. д. Некоторые выводы относительно влияния геометрических размеров цилиндров, тем не менее, необходимо сделать.

Типовые параметры работы двигателей

Существует разделение ДВС на такие типы:

  • Бензиновые – часто используются в гражданском автомобилестроении, наиболее распространенный тип;
  • Дизельные – эти агрегаты отличаются надежностью и экономичностью. При этом несколько уступают бензиновым аналогам в динамике (набор скорости), но выигрывают по показателям проходимости. Широко используются военными, распространены в гражданском автомобилестроении;
  • Газовые – используют в качестве топлива сжиженный, природный, сжатый газ, который закачивается в специальные баллоны;

В список можно включить гибридные газодизельные агрегаты и роторно-поршневые. Последний тип широко использовался авиацией до середины XX века, в современных условиях встречается редко.

Народные способы

Итак, ближе к теме. Расточить блок цилиндров в домашних условиях можно без специального оборудования несколькими народными методами. Потребуют они не только времени, что само собой разумеется, но и терпения.

Способ 1

Метод хотя и «дедовский», но тоже без инструмента не обходится. Тут подойдет хорошая электродрель, поставленная на малые обороты. Обязателен также изношенный поршень, имеющий зазор в гильзе (сбоку). И еще нужна будет цилиндровая шпилька, а также шкурка с разным номером абразива.

Поршень в данном случае играет роль самого значимого элемента. Он – это рабочее тело, на которое фиксируется наждачка. Лучше подбирать старый и отработавший свой срок поршень, так как после расточки он уже будет негодным для эксплуатации.

В автосервисе применяется не бумага, а абразивная крошка. Вместо дрели, как и было сказано выше, применяется специальный станок с воротком, имеющим положенный диаметр.

Ремонтный процесс

  • Посередке поршня сверлится отверстие под цилиндровую шпильку.
  • На шпильку накручивается гайка, а затем шпилька вставляется в поршень торчком вверх.
  • Шпилька затягивается накрепко.
  • Пропиливается разрез на поршне металлической ножовкой.
  • В получившееся отверстие вставляется шкурка, а затем оборачивается вокруг поршня.
  • Эта своеобразная насадка устанавливается в дрель, плотно затягивается.
  • Цилиндр фиксируется от проворачиваний.
  • Дрель включается на малый оборот. Расточка начинается сверху вниз, а после снизу вверх.

Примечание. В процессе такой расточки надо следить за тем, чтобы шкурка не выходила из поршня. Вначале применяется крупная шкурка, потом более мелкая. На завершающем этапе шлифовка должна проводиться нулевкой.

Некоторые эксперты также советуют проводить расточку блока цилиндров, одновременно используя масло. Другие не согласны с этим мнением, так как считают, что и на сухую неплохо растачивается. Последний вариант нам более импонирует, тем более, равномерность и гладкость можно почувствовать руками, если иметь определенную сноровку.

Полезная рекомендация гласит: чтобы не отбить руки в процессе шлифовки электродрелью, рекомендуется хорошенько зафиксировать цилиндр, но постараться его не повредить при этом.

Также вам будет полезно видео о хонинговании.

2 способ

В качестве основного инструмента в данном случае будет использоваться деревянная оправка. Но придется обратиться к фрезеровщику, который эту самую оправку выточит. Технология изготовления оправки основана на следующей формуле: если растачиваемый цилиндр на 76, оправка из бруска должна иметь 74 мм в диаметре. Что касается длины, то она должна быть больше размера цилиндра на 200 мм.

Подготовка приспособы

  • В оправке сверлится дырка.
  • Ножовкой пропиливается вдоль оправки разрез, в который вставляется абразивная бумага, как и в вышеописанном случае.

Примечание. Примерная глубина паза должна равняться 10 мм. Шкурка, как и в первом случае, должна быть и крупной, и мелкой.

Приступаем к работе

  • Абразивная бумага оборачивается вокруг оправки.
  • Шкурка обильно смачивается маслом.
  • Оправкой растачивается цилиндр. Надо вращать оправку внутри цилиндра крупной в размерах шкуркой, пытаясь достичь свободного движения по поверхности. Затем менять бумагу на мелкую и продолжать.

Простые советы

Идеальный вариант расточки цилиндров, которые содержит блок мотора автомобиля:

Поршень должен сидеть внутри плотно, не смещаться вниз от собственного веса.

Идеальный вариант расточки цилиндров, которые содержит блок мотора мотоцикла:

Поршень внутри цилиндра должен проходить легко, но и не болтаться слишком, так как при нагреве он будет подклинивать от физического расширения.

Научившись проводить расточку своими руками правильно, вы более не будете озабочены проблемой, которая возникает у большинства владельцев б/у машин. Избежать пониженной компрессии ДВС на подержанных автомобилях вряд ли удается, но провести расточку и повысить компрессию теоретически сможет каждый.

Безусловно, как и в начале статьи, мы предупреждаем читателя. Скорее всего, провести расточку правильно без соответствующих знаний не удастся, но желание может перебороть все сомнения. Посмотрите обязательно несколько видео инструкций, изучите наши рекомендации и вперед!

Расположение цилиндров

Существует такое понятие, как конфигурация двигателя, она определяется компоновкой цилиндров, их расположением. Можно выделить 2 основных типа – рядный, когда цилиндры расположены в ряд и V-образный. Второй тип наиболее часто используется в современном автопроме. В этом случае цилиндры располагаются под углом и соединяются с коленчатым валом, образуя латинскую букву V. Такая компоновка имеет подвиды:

  • W-образное расположение цилиндров;
  • Y-образное расположение цилиндров.

Реже применяются компоновки, образующие форму латинских букв U и H.

Трехцилиндровые двигатели[править | править код]

Рядный трехцилиндровый двигательправить | править код

Четырехтактный трехцилиндровый рядный двигатель с чередованием вспышек через 120 градусов

Четырехтактный трехцилиндровый рядный двигатель с чередованием вспышек через 360/180 градусов

Рядный трехцилиндровый двигатель, установленный поперечно, в действительности представляет собой развитие конструкции рядного двухцилиндрового в попытке обрести компромисс между проблемами вибрации последнего и шириной четырехцилиндрового двигателя. В особенности это относится к двухтактным двигателям, кривошипные камеры которых становятся чрезмерно широкими в трехцилиндровом варианте, а в четырехцилиндровом он был бы безусловно громоздким.

Двухтактный трехцилиндровый двигатель был фаворитом фирм в 70-х, тому есть множество примеров среди мотоциклов ]Suzuki[/anchor] и Kawasaki. Оба этих изготовителя даже решились на создание двухтактных двигателей объемом 750 куб. см; GT 750 с водяным охлаждением от компании Suzuki и КН 750 от Kawasaki.

Шатунные шейки коленчатого вала располагались между собой под углом 120 градусов, и силы первого порядка были достаточно хорошо сбалансированы, но из-за сложного эффекта “качающейся пары” (скорее, “качающейся тройни”), они прославились высоким уровнем высокочастотной вибрации, особенно, если агрегат был недостаточно хорошо изолирован от рамы резиновыми подушками.

Triumph осталась верна трехцилиндровому двигателю, многие модели этой компании отличаются рядным трехцилиндровьм двигателем поперечного расположения. Однако, по мнению большинства изготовителей, у трехцилиндрового двигателя есть небольшое преимущество по сравнению с рядным четырехцилиндровым, он представляет собой превосходный компромисс между низкооборотным двухцилиндровым двигателем и четырехцилиндровым с его запредельной мощностью.

Рядный трехцилиндровый двигатель горизонтального расположенияправить | править код

]BMW[/anchor] выступила с интересной вариацией на вышеупомянутую тему в виде своего К 75, цилиндры которого располагаются горизонтально в ряд, а коленчатый вал – продольно вдоль рамы мотоцикла; по существу он был развитием их горизонтального четырехцилиндрового двигателя, появившегося ранее. Несмотря на то, что на первый взгляд двигатель несколько необычный (головка цилиндра этого двигателя располагается с одной стороны, а кривошипная камера – с другой], он достаточно узок и компактен, а также обладает низким центром тяжести и хорошо подходит для карданной схемы привода.

Трехцилиндровый V-образный двухтактный двигательправить | править код

Двухтактный V-образный трехцилиндровый двигатель

Согласно любым стандартам, трехцилиндровый V-образный двухтактный двигатель – причуда, и кажется, что такая конструкция двигателя вряд ли может получить развитие.

Впервые такой двигатель появился в роли силовой установки для 500-кубового мотоцикла класса Grand Prix. Странное расположение цилиндров было выбрано с целью избежать проблемы увеличения ширины, присущей двухтактным рядным трехцилиндровым двигателям; даже если уменьшить длину коленчатого вала до минимально возможных размеров, при разделенных кривошипных камерах двигатель все же, остается большим из-за широких цилиндров с продувочными каналами. Благодаря смещению центрального цилиндра допускается их частичное наложение, и общая ширина, таким образом, снижается. После удачного выступления на соревнованиях ]Honda[/anchor] выпустила дорожную версию – NS 400R.

Объем двигателя

Рабочий объем ДВС определяет его мощность. Этот параметр измеряется в см3, но чаще в литрах. Он определяется путем суммирования внутреннего объема всех цилиндров силового агрегата. За основу в вычислениях берется поперечное сечение цилиндра и умножается на длину хода по нему поршня. В результате получается рабочий объем. Параметр также определяет во многих странах мира сумму сборов. Соответственно чем больше объем, тем мощнее двигатель, а значит, его владелец заплатит больший взнос. Перспективным направлением разработок современности являются ДВС с изменяемым объемом. Это технология, когда при определенных условиях цилиндры отключаются.

Атмосферный двигатель или турбомотор

Начнем с того, что атмосферный двигатель «затягивает» воздух в цилиндры естественны образом (за счет разрежения, которое создается в результате движения поршней). Турбонаддув представляет собой решение, которое позволяет принудительно нагнетать воздух в цилиндры двигателя под давлением.

Сразу отметим, практически все современные дизельные двигатели являются турбированными, так как именно наличие турбокомпрессора на дизеле позволяет добиться необходимой мощности, экономичности и ряда других важнейших характеристик от моторов данного типа. Другими словами, простой атмосферный дизель на легковом авто сегодня найти достаточно сложно.

Однако если речь идет о бензиновых моторах, ситуация меняется. Большинство таких ДВС являются атмосферными. Дело в том, что хотя турбина обеспечивает значительный прирост мощности и крутящего момента без увеличения объема двигателя, решение одновременно усложняет конструкцию и делает силовой агрегат более дорогим в ремонте и обслуживании.

  • Турбодвигатель нуждается в более качественном топливе и сокращении интервалов замены масла. Еще стоит отметить сниженный ресурс в результате более высоких нагрузок на бензиновый турбомотор.

Становится понятно, что хотя мощность турбированного мотора больше, чем у атмосферного аналога с таким же объемом, такой двигатель можно считать более «проблемным». Прежде всего, небольшой ресурс дорогостоящей турбины (около 80-100 тыс. км.) и самого двигателя (в среднем, около 200 тыс. км. для бензиновых версий и 350-400 для дизелей).

Статья в тему: Реснички на фары

Что касается расхода топлива, на турбомоторах в спокойном режиме езды он может быть ниже, чем у атмосферных аналогов в одинаковых условиях. Однако на практике значительной экономии не получается, так как турбированный двигатель обычно располагает водителя к активному драйву.

Материал, из которого изготавливается двигатель

Основным материалом в производстве двигателей являются металлы и их сплавы:

  • Чугун – обеспечивает надежность и прочность, но минусом является внушительный вес;
  • Алюминиевые сплавы – дают неплохую прочность, при этом легкие. Недостаток – большая стоимость;
  • Магниевые сплавы – наиболее дорогостоящий материал, отличается высокой прочностью.

Многие производители автомобилей комбинируют материалы. Это во многом диктуется принадлежностью модели к тому или иному классу, что ставит ее в определенные ценовые рамки.

Мощность двигателя

Расход топлива

Показатель потребления топлива двигателем зависит от его рабочего объема, а соответственно мощности. Основополагающую роль играет тип топливной системы:

  • Карбюраторная;
  • Инжекторная.

Измеряется показатель в литрах на 100 км. Техническая документация современных автомобилей предоставляет данные о расходе топлива при нескольких режимах движения: езда по городу, трассе, смешанный тип. В некоторых моделях, преимущественно внедорожниках, указывается расход при движении в условиях бездорожья, так как задействуются все 4 колеса и потребление бензина, дизеля значительно возрастает.

Тип топлива

ДВС могут потреблять разные виды топлива, но в основном используются:

  • Бензин – продукт переработки нефти-сырца или вторичной перегонки нефтепродуктов. Основополагающим показателем является октановое число, которое указывается в цифрах. Буквенное сочетание, стоящее перед цифрами «АИ» означает: А – бензин автомобильный; И – октановое число определено исследовательским способом. Если этой буквы в маркировки нет, значит, октановое число выведено моторным методом. Российские стандарты предусматривают такие марки бензина: А-76, А-80, АИ-91, АИ-92, АИ-93, АИ-95, АИ-98. Наиболее востребованными в настоящее время являются марки с октановым числом 92,95,98;
  • Дизель или дизельное топливо – получается путем промышленного перегона нефти. В его состав входят 2 вещества: 1. Цетан – легковоспламеняющийся компонент, чем его содержание больше, тем выше качество топлива; 2. Метилнафталин – не горючий компонент. Основополагающими характеристиками дизеля являются: прокачиваемость и воспламеняемость. В зависимости от спецификации подразделяется на: летнее, зимнее, арктическое (ориентировано на использование при экстремально низких температурах).

Также ДВС в качестве топлива может использовать газы: метан, пропан, бутан. Для этого на автомобиль устанавливаются специальные системы.

Типы и параметры ДВС

На что влияет количество цилиндров в двигателе?

Автомобильные поршневые двигатели внутреннего сгорания (ДВС) обладают множеством показателей – мощность, крутящий момент, расход топлива, выброс вредных веществ и т. д., которые во многом зависят от их конструктивных параметров.

Типы двигателей

Двигатель — устройство, преобразующее энергию сгорания топлива в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов:

  • впуск воздуха или его смеси с топливом;
  • сжатие рабочей смеси,
  • рабочий ход при сгорании рабочей смеси;
  • выпуск отработавших газов.

Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.

Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:

  • в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
  • в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
  • двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.

Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — “тяговиты на низах”).

Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:

  • большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
  • большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
  • меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.

Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания. Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание.

Гибридная силовая установка представляет собой комбинацию поршневого двигателя (как правило, дизеля), электродвигателя, генератора и тяговых (тяговая аккумуляторная батарея, в отличие от стартерной, рассчитана на разряд большими токами (50-100 А) в течение 30-60 минут) аккумуляторных батарей.

Работа этой установки происходит в различных режимах в зависимости от характера движения автомобиля. При интенсивном разгоне вместе работают поршневой и электрический двигатели. Во время торможения двигателем за счет энергии замедления генератор заряжает аккумуляторные батареи. При движении в городском цикле может работать только электродвигатель.

Все это позволяет, сохраняя (или даже улучшая) динамику разгона, значительно повысить экономичность и снизить выброс вредных веществ.

Компоновка поршневых двигателей

Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.

Рядный двигательV-образный двигатель

Рядный двигатель (рис. 1, а) — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров (2, 3, 4, 5 и 6). Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной.

V-образный двигатель (рис. 1, б) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала. Наиболее часто такое размещение цилиндров применяется для шести- и восьмицилиндровых двигателей и обозначается V6 и V8 соответственно. Такая компоновка позволяет уменьшить длину двигателя, но увеличивает его ширину.

Оппозитный двигатель (рис. 1, в) имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок.

VR-двигатель (рис. 1, г) обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.

W-двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 1, д) или как бы две VR-компоновки (рис. 1, е).Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

Конструктивные параметры двигателей

Любой двигатель характеризуется следующими конструктивно заданными параметрами (рис. 2), практически неизменными в процессе эксплуатации автомобиля.

Конструктивные параметры двигателей

Объем камеры сгорания — объем полости цилиндра и углубления в головке над поршнем, находящимся в верхней мертвой точке — крайнем положении на наибольшем удалении от коленвала.

Рабочий объем цилиндра — пространство, которое освобождает поршень при движении от верхней до нижней мертвой точки. Последняя является крайним положением поршня на наименьшем удалении от коленвала.

Полный объем цилиндра — равен сумме рабочего объема и объема камеры сгорания.

Рабочий объем двигателя (литраж) складывается из рабочих объемов всех цилиндров.

Степень сжатия — отношение полного объема цилиндра к объему камеры сгорания. Этот параметр показывает, во сколько раз уменьшается полный объем при перемещении поршня из нижней мертвой точки в верхнюю. Для бензиновых двигателей определяет октановое число применяемого топлива.

Показатели двигателей

Силы, действующие в цилиндре

Показателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр.

Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндро-поршневой группы и клапанов.

Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо (рис. 3) и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).

Крутящий момент увеличивается с ростом:

  • рабочего объема . Поэтому двигатели, которым необходим значительный крутящий момент, обладают большим объемом;
  • давления горящих газов в цилиндрах , которое ограничено детонацией (взрывное горение бензо-воздушной смеси, сопровождаемое характерным звонким звуком. Ошибочно называется “стуком поршневых пальцев”) или ростом нагрузок в дизелях.

Максимальный крутящий момент двигатель развивает при определенных оборотах (см. ниже), они вместе с его величиной указываются в технической документации.

Мощность двигателя — величина, показывающая, какую работу он совершает в единицу времени, измеряется в кВт (ранее в лошадиных силах). Одна лошадиная сила (л.с.) приблизительно равняется 0,74 кВт. Мощность равна произведению крутящего момента на угловую скорость коленвала (число оборотов в минуту, умноженное на определенный коэффициент).

Двигатели большей мощности производители получают увеличением:

  • рабочего объема , что, в свою очередь, приводит к росту габаритов двигателя и ограничению допустимых максимальных оборотов из-за значительных сил инерции увеличившихся деталей;
  • оборотов коленчатого вала , число которых ограничено инерционными силами и увеличением износа деталей. Высокооборотный двигатель одинаковой мощности (при прочих равных условиях — конструкции двигателя, технологии изготовления, применяемых материалах и т.д.) с низкооборотным обладает меньшим сроком службы, так как в среднем для одного и того же пробега его коленчатый вал будет совершать больше оборотов;
  • давления в цилиндре путем повышения степени сжатия либо наддувом воздуха посредством турбо- или механических нагнетателей. Для применения наддува степень сжатия вынужденно уменьшают для предотвращения детонации (у бензиновых двигателей) и снижения жесткости работы (повышенные нагрузки в цилиндро-поршневой группе дизеля, сопровождаемые чрезмерным шумом) (у дизелей). Наддув позволяет, например, сохранить мощность при меньшем рабочем объеме.

Номинальная мощность — гарантируемая производителем мощность при полной подаче топлива на определенных оборотах. Именно она, а не максимальная мощность, указывается в технической документации на двигатель.

Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива.

Характеристики двигателей

При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.

Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рис. 4), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.

Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.

Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.

Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент.

Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля.

В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.

Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике (см. рис. 4). Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.

Пунктирной линией на графике показаны более оптимальные характеристики двигателя.

Количество и расположение цилиндров

Задача не ограничивается этими условиями. Перед конструкторами, как и прежде, стоит задача поместить двигатель заданной мощности в минимальный объем подкапотного пространства. Стараясь решить ее, разработчики экспериментируют, в числе прочего, с количеством цилиндров. В разное время в серийных автомобилях применялись как миниатюрные одноцилиндровые двигатели, таки огромные агрегаты с 16 цилиндрами.

Одноцилиндровый двигатель внутреннего сгорания

Одноцилиндровый двигатель — простейшая конструкция с единственным рабочим цилиндром. Одноцилиндровый двигатель полностью не сбалансирован, поэтому его ход не равномерен. У двигателей этого типа наименьшее отношение площади поверхности цилиндра к рабочему объёму. Это важный параметр, так как потери тепла во время работы двигателя минимальны, а значит, КПД у одноцилиндрового двигателя самый высокий.

Популярные термины «long block» и «short block» не имеют никакого отношения к количеству цилиндров и длине блока, так как речь идет о высоте. Long block — мотор в сборе без навесного оборудования

Недостаток конструкции — в большом напряжении деталей кривошипно-шатунного механизма по сравнению с многоцилиндровыми двигателями. Они работают по двухтактному циклу, в котором рабочие ходы происходят вдвое чаще. На деле это означает, что двигатель работает на очень высоких оборотах, и детали испытывают колоссальные нагрузки. Кроме того, возможности по увеличению объема единственного поршня ограничены порогом возникновения детонации, а значит, повышать объем можно лишь до определенного предела. Из-за этого их качества применение одноцилиндровых двигателей в тяжелых четырехколесных транспортных средствах нецелесообразно. Чаще всего их используют в качестве силовой установки легких мотоциклов или мопедов. Из четырехколесных средств передвижения такие двигатели ставились только на мотоколяски для инвалидов.

Дизельный или бензиновый двигатель: какой мотор будет лучше

Двигатели внутреннего сгорания, которые можно встретить под капотами различных авто, бывают бензиновыми и дизельными. Бензиновый двигатель в качестве топлива использует бензин. Для того чтобы воспламенить горючее в цилиндрах, агрегаты данного типа имеют систему зажигания, результатом работы которой является электрическая искра на свечах зажигания.

Дизельный двигатель использует дизтопливо (солярку), причем системы зажигания не имеет. В этих моторах топливо воспламеняется самостоятельно от сильного сжатия и нагрева.

Каждый из этих ДВС имеет как свои преимущества, так и недостатки. Например, бензиновый агрегат более распространен, его дешевле и проще обслуживать. Однако такие двигатели имеют меньший ресурс, расходуют больше бензина, система зажигания может давать сбои.

Дизельные моторы появились на легковых авто сравнительно недавно, при этом отличаются высоким КПД, расходуют небольшое количество топлива. При этом слабым местом таких ДВС является чувствительная топливная система, работоспособность которой сильно зависит от качества солярки. Еще следует учитывать, что дизельный двигатель более дорогой в ремонте и обслуживании по сравнению с бензиновыми аналогами.

Получается, если важна высокая максимальная скорость автомобиля, повышенный комфорт (минимум шумов и вибраций), а также более дешевое обслуживание, тогда следует обратить внимание на бензиновый агрегат. Еще отметим, что на такой двигатель можно без особых проблем установить ГБО.

Если же на первом плене стоит топливная экономичность и «тяговитость», тогда оптимальным решением будет дизельный мотор. Что касается установки газового оборудования, переделка в газодизель также возможна, однако для гражданских легковых авто попросту нецелесообразна с учетом высокой стоимости и сложности таких доработок.

Рядный двухцилиндровый двигатель

В этой конфигурации два цилиндра расположены в ряд и вращают общий коленчатый вал.

Так же, как и одноцилиндровый, рядный двухцилиндровый двигатель не сбалансирован и не обеспечивает плавности хода (при работе по четырехтактному циклу). Четырёхтактные двухцилиндровые двигатели неоднократно устанавливались в сверхкомпактные автомобили наподобие Daihatsu Mira. Для решения вопроса с вибрацией в конструкции двигателя применяются балансировочные валы.

Двухтактные двухцилиндровые двигатели нашли очень широкое применение, так как работают без вибрации. Их очень часто можно видеть в конструкции мотоциклов. В прошлом, когда об экономии топлива конструкторам задумываться всерьез не приходилось, нередко можно было видеть двухцилиндровые двигатели достаточно большого объёма.

Рядный трёхцилиндровый двигатель

В этой конфигурации три цилиндра расположены в ряд, поршни вращают один общий коленчатый вал.

Трехцилиндровый двигатель не сбалансирован как в четырехтактном, так и в двухтактном варианте. Его относительная распространенность объясняется простотой в производстве. В четырехтактном варианте двигатель работает не плавно, поэтому требуется применение балансировочного вала. Используется на автомобилях с небольшим рабочим объёмом, таких как Opel Corsa или Pajero Mini, нередко в сочетании с турбиной для увеличения мощности. балансировочный (успокоительный) вал, который вращается со скоростью коленвала, но в обратную сторону и компенсирует момент 1-го порядка.

Система газораспределения

Газораспределительная система играет важную роль в работе автомобиля. Она напрямую влияет на работоспособность вашего железного «друга». Ее неисправность может повлечь за собой серьезные поломки, вот почему иногда важно знать ее составляющие. К ним относятся механизм распределения, распредвалы и привод.

Газораспределительная система может быть простой и динамической. Вторая разновидность системы обеспечивает свободное переключение режимов двигателя, выступает как стабилизатор процесса его работы. В динамической системе регулируются фазы и высота подъема клапана.

Современные автомобили могут иметь различное количество распредвалов, однако оптимальный вариант – это установка одного устройства на 8 клапанов мотора.

Ремень или цепь могут выступать приводом в устройстве системы газораспределения. Прежде чем выбирать наиболее удобный вариант, ознакомьтесь с их достоинствами и недостатками. Ремень системы может изнашиваться через равный промежуток времени, поэтому требует вложений в его замену. К основному достоинству можно отнести практически бесшумную работу устройства. В отличие от ремня, цепь вызывает неприятный металлический лязг. Однако цепь является наиболее прочным и надежным приводом, который хоть и имеет большую стоимость, но не изнашивается в течении длительного срока эксплуатации.

Силовые агрегаты автомобилей имеют еще ряд особенностей устройства двигателя, однако для водителя-непрофессионала они не имеют значения.

Рядный четырёхцилиндровый двигатель

Наиболее распространенная в наше время конфигурация двигателя с рядным расположением четырёх цилиндров. Плоскость расположения цилиндров может быть строго вертикальной или находиться под углом, как у некоторых двигателей Volkswagen.

Четырехтактные двигатели L4 не сбалансированы, но, так же как и трехцилиндровые, просты в производстве. Современные рядные четырехцилиндровые двигатели редко имеют рабочий объем более 2,3 – 2,4 литра. Ограничение связано с возрастанием уровня вибраций, поэтому на современных двигателях большого объема часто используются успокоительные валы. Применяется на огромном количестве автомобилей разных марок и моделей.

Материал, из которого изготовлено устройство внутреннего сгорания

Существует как минимум три вида материалов, из которых изготавливаются силовые агрегаты :

  1. Чугун. Чугунные двигатели отличаются высокой прочностью и надежность, а также гарантируют долгий срок эксплуатации. Но, так же как и все чугунные изделия, мотор из данного материала имеет слишком большой вес, который ухудшает управляемость автомобиля.
  2. Алюминий, в отличие от чугуна, занимает не так много места и имеет небольшой вес, однако обеспечивает меньшую прочность, которая не так надежно проявляет себя в повседневной жизни.
  3. Магниевые сплавы. Такой материал в большинстве случаев используют на внедорожниках и автомобилях бизнес-класса. Такая выборочная установка объясняется легко: высокий уровень прочности и небольшой вес реализуется на мировом рынке за слишком высокую стоимость, и ее установка на обычные малолитражки будет экономически не выгодна.

В процессе эксплуатации транспортного средства для водителя находятся приоритетные характеристики, на которые впоследствии он и будет обращать внимание. К ним относятся выходные характеристики силового агрегата:

Рядный пятицилиндровый двигатель

В этой конфигурации двигателя внутреннего сгорания в ряд расположены пять цилиндров, поршни вращают один общий коленчатый вал. Двигатель этой конструкции не сбалансирован, но при определенном порядке срабатывания цилиндров (1-2-4-5-3) проблема вибрации не возникает.

В целях экономии производители нередко не разрабатывают новый блок, уменьшая количество цилиндров. Именно поэтому иногда более мощный двигатель без переделок встает на место маломощного

Рядные пятицилиндровые двигатели нередко встречаются в некоторых моделя Audi и Volkswagen, Mercedes, Honda, Fiat, Daihatsu, Mitsubishi и некоторых других. Впервые в истории легковых автомобилей пятицилиндровый двигатель появился на Audi 100 начала 1980-х.

Рядный шестицилиндровый двигатель

В рядном шестицилиндровом двигателе поршни также вращают общий коленвал. С точки зрения теории, четырёхтактный шестицилиндровый двигатель полностью сбалансирован, так как силы инерции разных цилиндров компенсируют друг друга. К тому же, в отличие от рядного четырехцилиндрового двигателя, силы инерции 2-го порядка также взаимно компенсируются. В итоге шестицилиндровые рядные двигатели просты конструктивно и обеспечивают высокую плавность хода. Опять же, согласно теории, взаимная компенсация всех сил роднит его со схемой V12, которая представляет собой два расположенных под углом друг к другу шестицилиндровых двигателя с единым коленвалом.

Компоновка двигателя, расположение мотора и количество клапанов

Если говорить о различных характеристиках, двигатели отличаются по количеству цилиндров, по расположению цилиндров, а также по самому расположению мотора в подкапотном пространстве. Например, силовые агрегаты бывают 3-х, 4-х, 5-и, 6-и, 8-и цилиндровыми и т.д.

По расположению цилиндров также выделяют рядные, V-образные, оппозитные двигатели и т.п. Силовой агрегат может быть установлен под капотом продольно или поперечно. На каждом цилиндре может быть установлено по 2, 4 и более клапанов ГРМ.

Отметим, что на общее число цилиндров следует обращать внимание только тогда, когда речь идет о выборе малолитражки. Если точнее, не так давно на городских субкомпактных автомобилях в практику вошла установка трехцилиндровых атмосферных и турбомоторов. При этом такие ДВС с тремя цилиндрами отличаются повышенным уровнем вибраций.

Во всех остальных случаях количество цилиндров в той или иной мере определяет мощность, при этом в плане вибраций не так важно, сколько их имеет конкретный мотор, 4, 5 или 6. Зачастую незначительную роль играет и особенность расположения ДВС под капотом.

Единственное, на практике многие рядные двигатели с 6-ю цилиндрами, установленные продольно, отличаются повышенной склонностью к поломкам даже при незначительном перегреве сравнительно с другими аналогами.

Как правило, особого внимания заслуживает только компоновка цилиндров. Схем компоновки много, при этом наиболее распространенными являются:

  • рядные двигатели;
  • V-образные агрегаты;
  • оппозитные моторы;

Рядный мотор из этого списка самый простой, цилиндры идут в один ряд над коленчатым валом. Такой двигатель проще обслужить и отремонтировать. Главным минусом является то, что увеличение количества цилиндров больше 6 приводит к тому, что мотор становится слишком длинным и его не удается разместить как продольно, так и поперечно в подкапотном пространстве.

Статья в тему: Можно ли использовать адаптеры-треугольники для пристегивания детей в машине

Рекомендуем также прочитать статью о том, какие автомобильные двигатели самые надежные и долговечные. Из этой статьи вы узнаете о наиболее известных и надежных моторах, которые выделяются среди всевозможных ДВС благодаря своему большому моторесурсу.

Для решения этой задачи на машину ставится V-образный мотор, цилиндры распложены уже не в один, а в два ряда, причем под углом друг к другу. Такие ДВС сложнее рядных, их дороже обслуживать и ремонтировать. Достаточно вспомнить о том, что указанный тип агрегатов имеет две ГБЦ со всеми вытекающими последствиями. Еще одним минусом является относительно высокая вибронагруженность.

Оппозитные двигатели используют только некоторые автопроизводители. В частности, на таких ДВС специализируется Subaru из Японии, также их производят немцы Porsche. Оппозитный двигатель создает минимум вибраций, однако крайне сложен в обслуживании, далеко не все автосервисы могут выполнить его качественный ремонт при такой необходимости.

Теперь перейдем к клапанам. От их количества напрямую завит мощность двигателя, приемистость мотора и ряд других параметров. Чем больше клапанов, тем лучше цилиндр наполняется топливно-воздушной смесью и вентилируется от выхлопных газов. При этом увеличение числа клапанов закономерно приводит к усложнению и удорожанию всей конструкции ГРМ.

Сегодня самые простые моторы имеют по 2 клапана (впускной и выпускной) на каждый цилиндр. Наиболее распространенным вариантом на бюджетных авто является рядный четырехцилиндровый 8-клапанный двигатель. Подобные агрегаты самые доступные по цене и простые в ремонте. При этом они наименее мощные и недостаточно экономичные сравнительно с 16-клапанными вариантами и т.д.

V-образный шестицилиндровый двигатель

В этом двигателе применена схема с двумя рядами цилиндров, по три в ряд, и общим коленвалом. Цилиндры расположены под углом друг к другу, чем и обусловлено появление в названии буквы V.

По популярности конфигурация уступает только рядному четырёхцилиндровому двигателю.

Впервые появился на итальянской модели Lancia Aurelia в 1950 году, однако за счет компактности быстро завоевал популярность, особенно в период массового перехода на поперечное расположение двигателя.

V6 не сбалансирован, но успокоительные валы не применяются — проблема вибрации решается противовесами на коленчатом вале.

Шестнадцатицилиндровые двигатели

В настоящее время в серийных автомобилях эти двигатели не применяются.В 1930 под брендом Cadillac была выпущена модель V16 с шестнадцатицилиндровым двигателем объёмом 7,3 литра мощностью 185 л.с. V16 оказался единственным серийным легковым автомобилем с двигателем V16.

Самый большой и мощный дизельный двигатель в мире достигает 13.5 метров высоты и 26.59 метров длины. У него всего 14 цилиндров

Значительно позже, в 1987 году, двигатель V16 на автомобиль седьмой серии Е32 в качестве эксперимента установила компания BMW. Рабочий объем двигателя составлял 6,76, а мощность 408 л.с. Чтобы разместить двигатель под капотом, пришлось перенести радиаторы системы охлаждения в багажник.

Под капотом суперкара Bugatti Veyron Vitesse установлен двигатель W16 мощностью в 1200 л. с. при 6400 об/мин. Крутящий момент силовой установки из 4-х блоков по 4 цилиндра в каждом равен 1500 Н·м в пределе 3000—5000 об/мин.

Атмосферный двигатель или турбомотор

Начнем с того, что атмосферный двигатель «затягивает» воздух в цилиндры естественны образом (за счет разрежения, которое создается в результате движения поршней). Турбонаддув представляет собой решение, которое позволяет принудительно нагнетать воздух в цилиндры двигателя под давлением.

Сразу отметим, практически все современные дизельные двигатели являются турбированными, так как именно наличие турбокомпрессора на дизеле позволяет добиться необходимой мощности, экономичности и ряда других важнейших характеристик от моторов данного типа. Другими словами, простой атмосферный дизель на легковом авто сегодня найти достаточно сложно.

Однако если речь идет о бензиновых моторах, ситуация меняется. Большинство таких ДВС являются атмосферными. Дело в том, что хотя турбина обеспечивает значительный прирост мощности и крутящего момента без увеличения объема двигателя, решение одновременно усложняет конструкцию и делает силовой агрегат более дорогим в ремонте и обслуживании.

  • Турбодвигатель нуждается в более качественном топливе и сокращении интервалов замены масла. Еще стоит отметить сниженный ресурс в результате более высоких нагрузок на бензиновый турбомотор.

Становится понятно, что хотя мощность турбированного мотора больше, чем у атмосферного аналога с таким же объемом, такой двигатель можно считать более «проблемным». Прежде всего, небольшой ресурс дорогостоящей турбины (около 80-100 тыс. км.) и самого двигателя (в среднем, около 200 тыс. км. для бензиновых версий и 350-400 для дизелей).

Статья в тему: Автомобильный ионизатор воздуха – в салоне свежо, как после грозы!

Что касается расхода топлива, на турбомоторах в спокойном режиме езды он может быть ниже, чем у атмосферных аналогов в одинаковых условиях. Однако на практике значительной экономии не получается, так как турбированный двигатель обычно располагает водителя к активному драйву.

Источник https://www.kolesa.ru/article/dlinnohodnye-i-korotkohodnye-motory-v-chem-raznitsa-i-kakie-luchshe

Источник https://ilifia-club.ru/dvigatel/kolichestvo-cilindrov.html

Источник https://mazda626club.ru/remont/skolki-cilindrovye-dvigateli-byvayut.html

Понравилась статья? Поделиться с друзьями: