Задиры в цилиндрах, причины, как определить, что делать, как убрать, список присадок

Содержание

Топлива цилиндры двигателя автомобиля

З адиры в цилиндрах — неисправность, обусловленная износом двигателя и приводящая к ряду негативных последствий.

Такая проблема может привести к снижению мощности, ухудшению динамики, падению компрессии / давления в камере сгорания, вплоть до невозможности эксплуатации из-за повреждения.

Ниже рассмотрим, почему появляются задиры на зеркале цилиндров, и как распознать неисправность без разборки мотора. Отдельно приведем машины, которые находятся в группе риска, выделим методы диагностики и устранения неисправности.

Что такое задир в цилиндре (на поршне)

Это дефект, представляющий собой повреждение на стенке цилиндра или поршня. Появляется при уменьшении расстояния между этими элементами ниже допустимого уровня, из-за чего возникает контакт.

Они бывают продольными, вертикальными или хаотичными. Поражать весь цилиндр (поршень) или отдельные участки.

В наиболее сложных случаях возникает клин поршня, что требует срочного ремонта двигателя.

Если говорить о небольших задирах, они бывают на многих авто и не являются чем-то необычным.

Задиры, как массовое явление

Последнее время проблема задиров получила массовое распространение. К этому привела политика производителей, направленная на уменьшение веса двигателя и снижения расхода топлива.

Как правило, проблема касается ДВС с небольшим литражом и турбиной. Они больше подвержены нагреву и, соответственно, риску появления дефектов.

Из-за снижения зазора и уменьшения слоя масла появляются задиры, которые в дальнейшем могут привести к серьезным повреждениям двигателя.

Причины

Для своевременной диагностики и предотвращения неисправности важно знать причины появления задиров.

К основным можно отнести:

  1. Неправильная обкатка двигателя сразу после покупки автомобиля. В этот период важно аккуратно обращаться с ДВС, избегать повышенной частоты вращения и перегрева.
  2. Ошибки при выборе поршней в процессе сборки. При монтаже тугого пальца поршня меняется конфигурация, а при нагреве поршень трется о стенки цилиндров. Это является причиной деформации.
  3. Попадание твердых элементов между стенкой цилиндра и движущимся поршнем.
  4. Низкое давление охлаждающей / смазывающей жидкости в двигателе.
  5. Расширение поршня в результате чрезмерного нагрева или недостаточного отвода тепла от ДВС. Причиной может быть загрязненный радиатор, из-за чего не обеспечивается полноценная циркуляция смазывающей жидкости. В результате смазка теряет свои качества и не обеспечивает ожидаемый результат.
  6. Дефицит / полное отсутствие моторного масла. В результате появляется трение, повышается температура, и возникает риск задиров.
  7. Низкое качество смазки и не своевременная его замена.
  8. Форсирование работы непрогретого двигателя, гоночный режим.
  9. Грубая расточка блока цилиндров и несоблюдение правильных зазоров.

Одной из ключевых причин являются механические повреждения. Мощность современных ДВС частично подавляется катализатором для соответствия нормам экологичности.

Бытует мнение, что со временем внутренняя часть этой детали разрушается, а ее элементы вместе с частью выхлопных газов попадают в систему пуска, а далее в цилиндропоршневую группу.

Как результат, повышается износ мотора и появляются задиры. Последние могут появиться также при попадании на цилиндр любых посторонних элементов или воды.

Но данная теория многими мотористами опровергается. А что Вы думаете по этому поводу? Пишите в комментариях.

Признаки

Во избежание серьезного повреждения двигателя важно уметь своевременно определить проблему и принять меры по ремонту.

К наиболее распространенным симптомам стоит отнести:

  • посторонний шум, который не пропадает даже при достижении оптимального температурного параметра;
  • цокающий звук поршня из-за его перекоса;
  • уменьшение компрессии;
  • повышение «прожорливости» двигателя;
  • увеличение расхода смазки на угар.

Если вовремя не заметить или игнорировать эти признаки, со временем появляются стуки, а эксплуатация транспортного средства становится и вовсе невозможной.

Какие автомобили находятся в группе риска

При выборе «железного коня» важно понимать, какие авто находятся в группе риска с позиции появления задиров.

В эту группу можно включить:

  • малолитражки;
  • авто с турбированными двигателями;
  • машины, эксплуатируемые в условиях холодного климата, по бездорожью или разбитным дорогам;
  • авто, заправляемые низкокачественным топливом;
  • модели с двигателями-«миллионниками» БМВ;
  • машины Порше и другие спорткары, владельцы которых любят поездить «с огоньком» и т. д.

Для лучшего понимания рассмотрим основные моменты подробнее.

Эксплуатируемые в холодном климате

В зоне риска находятся машины, которые из-за региона проживания владельца часто эксплуатируются в мороз. Из-за низкой температуры прокладки разных узлов и устройств затвердевают.

Это приводит к ухудшению герметичности и риску попадания в цилиндропоршневую группу мелких частичек грязи, к примеру, песка.

В результате трения на поверхности появляются повреждения, а со временем и задиры.

Также опасны частые пуски двигателя в условиях сильных морозов. Из-за холода моторное масло загустевает, что приводит к дефициту смазки между цилиндром и поршнем.

Как результат, первое время происходит масляное голодание мотора, а с повышением частоты оборотов повышается вероятность появления задиров, а в будущем и стуков.

На бездорожье и разбитых дорогах

Эксплуатация в условиях частых вибраций приводит к тому, что хомуты на патрубках стираются или спадают. Например, это возможно на участке между заслонкой дросселя и воздушным фильтром.

Если происходит такая ситуация, в двигатель снова засасывается мелкий сор. Результатом является появление задиров.

Езда с огоньком

Негативное влияние на двигатель оказывает и резкий стиль вождения. В частности, резкие старты на светофоре могут привести к недостаточной смазке двигателя из-за продолжительного простоя и стекания масла в поддон.

Результат в этом случае стандартный — быстрый нагрев, дефицит масла и износ.

Отметим, что задиры являются распространенным явлением на двигателях G4KD, установленных на машинах корейского бренда: Киа Спортэйдж 3, Отптима, IX 35. Подробнее на этом вопросе мы еще остановимся ниже.

Можно ли ездить

Задиры могут быть разными и, соответственно, могут индивидуально влиять на работу двигателя. Одни являются полностью безопасными для мотора, а вторые могут негативным образом повлиять на его работу.

Классические задиры появляются при дефиците масла, когда между стенкой цилиндра и поршнем недостаточно смазки.

Появление таких дефектов не влияет на работоспособность двигателя и позволяет продолжать эксплуатацию в обычном режиме.

Но это не значит, что можно долго избегать посещения СТО, ведь рано или поздно повреждения усугубятся и придется покупать новый мотор.

Как определить, методы диагностики

Первые признаки появления задиров в цилиндрах — не повод паниковать. Для начала необходимо убедиться, что речь идет именно о такой неисправности.

Это можно сделать с помощью эндоскопа или АГЦ. Кратко рассмотрим особенности каждого из вариантов проверки.

Эндоскопом

Один из способов проверки двигателя — осмотр его внутренних элементов с помощью специальной камерой с дополнительной подсветкой.

Изображение выводится с камеру собственного экрана или дисплей смартфона.

Процесс проверки проходит в несколько этапов:

  1. Охлаждение двигателя.
  2. Откручивание свечей зажигания.
  3. Погружение зонда эндоскопа через свечной колодец.
  4. Проверка цилиндров на факт задиров и получение выводов специалиста.

Особенность метода состоит в том, что можно получить реальные данные о неисправности.

Кроме того, по состоянию внутренних элементов легко оценить правильность показаний. Стоимость процедуры на СТО составляет от 4000 рублей.

Метод АГЦ

Термин «АГЦ» расшифровывается как «Анализатор Герметичности Цилиндров».

Для его реализации применяется специальный прибор, к примеру, АГЦ-2, позволяющий определить состояние ЦПГ двигателя, оценить состояние внутренних его элементов, определить степень износа и т. д.

С помощью прибора измеряется два параметра.

Р1- полный вакуум

Этот параметр показывает наличие и объем утечки смазки через клапаны ДВС, прокладку головки блока цилиндра или поврежденное дно поршня.

При измерении этот параметр не должен быть ниже определенного уровня, который устанавливается для определенного двигателя и не зависит от состояния колец.

В зависимости от величины можно принимать решение об исправности гильзы цилиндра.

Р2 — остаточный вакуум

По этому показателю можно судить о факте утечки через поршневые кольца.

Кроме того, Р2 позволяет оценить уровень износа, факт повреждения колец, задиры поршней, потерю упругости колец и иные неисправности.

При измерении Р2 необходимо нажать на кнопку сброса, удерживать ее в течении двух-трех секунд, а после этого проверить параметр.

Фиксация Р2 осуществляется после отпускания кнопки сброса. Это нужно делать на случай, если во время измерений поршень будет располагаться выше НМТ в момент сжатия или еще не опустился до НМТ на рабочем ходу.

Все измерения проводятся без разборки мотора через отверстия форсунок / свечей в момент прокрутки стартера или пускового девайса.

Многие параметры необходимо анализировать в комплексе. К примеру, пневматическая плотность закрытия клапанов и наличие трещин в дне поршня в головке ГБЦ влияет на отношение Р1/Р2.

Если параметр опускается ниже допустимого, это позволяет определить поломки в клапанах и трещины в деталях, износ или другие нарушения.

Для получения точных результатов используется специальная диаграмма.

Задиры в цилиндрах на Киа Рио, Спортейдж, Хеднай IX 35

Владельцы автомобилей Киа Оптима, Спортейдж, Соната и IX35 регулярно сталкиваются с проблемой задиров. Проблема касается машин, выпущенных в период с 2011 по 2014 годы.

За это время продано свыше 100 000 автомобилей, которые разошлись по всему миру. При этом сама проблема обнаруживается не сразу, а при достижении пробега 50 000-70 000 км.

Оказалось, что неисправность касается 2-литровых моторов серии G4KD с индексом Theta2 с мощностью 165 лошадиных сил. В машинах, которые поставляются в РФ, поставляется двигатель объемом до 150 лошадиных сил.

Сам мотор представляет собой совместный продукт компаний Киа, Крайслер и Митсибиси. Он создан еще в 2005 году, и сразу пошел в серию.

В КНР он известен под названием G4KD, а в Японии — 4B11. Такие моторы, кроме рассмотренных выше моделях, также стоят на машинах «Крайслер», «Джип», «Додж» и «Митсубиси».

Интересно, что проблемы касаются не всей линейки, а версии Theta2. Это значит, что причиной задиров является какая-то конструктивная особенность, не характерная для машин из США и Японии.

Выходит, что в Южной Корее просто допустили ошибку и выпустили бракованную версию уже готового двигателя. Если говорить о причинах задиров, их несколько.

Попадание твердых элементов внутрь авто

В рассмотренных выше марках авто гарантия на катализатор всего 1000 км, после которых производитель не гарантирует его целостность.

В процессе эксплуатации соты могут разрушаться, и их элементы попадают в двигатель.

Отметим, что проблема характерна для 1.6-литровых моторов, а в 2-литровых агрегатах вероятность таких проблем сведена почти к нулю.

Дефицит / нехватка масла

Если говорить о причинах проблемы в моторах G4KD, дефицит масла — одна из основных версий.

Это обусловлено слабым насосом, который при работе на холостом ходу создает давление, не превышающее 0,5 атм. Еще одним минусом является отсутствие масляных форсунок.

Проблема может возникать при продолжительном простое в пробке / на светофоре. В таких обстоятельствах двигатель работает на холостых оборотах, смазка стекает вниз, а ее количество на стенках цилиндра ограничено.

При начале движения водитель жмет на газ, и первое время мотор работает почти без масла. Как результат, появляются задиры.

Еще оной причиной может быть заливка густого масла. Так, для G4KD нужно использовать 5W20. Если заливать 5W30 или 5W40, качество смазки ухудшается, и со временем появляются задиры.

Кроме того, в холодную погоду вязкость увеличивается, что создает дополнительные проблемы.

До прогрева смазки двигатель работает, по сути, на износ. Это, в свою очередь, приводит к повреждению зеркал цилиндра или юбки поршня.

Перегрев

В ситуации с двигателем G4KD нельзя исключать и перегрев. Многие специалисты сходятся во мнении, что это главная причина неисправности для указанного мотора. Это легко объяснить.

В целях экономии или по иным причинам производители не установили форсунки для «смачивания» нижней части поршня.

При этом выделяется несколько объяснений, почему появляются задиры из-за дефицита масла:

  1. Короткая юбка, что может привести к отклонению по вертикали.
  2. Высокая мощность при небольшом объеме мотора.
  3. Легкий поршень с меньшей теплоемкостью и более быстрым нагревом.

Получается, что в моторе небольшой мощности сгорает большой объем горючего. Как результат, двигатель перегревается.

Охлаждающая жидкость отводит тепло от цилиндра, поэтому с ним проблемы возникают редко.

Поршень, в свою очередь, не получает достаточный объем масла и греется. При этом нагрев происходит внизу, где деталь и прогревается выше нормы.

Как только определенная температура достигнута, зазор пропадает и поршень царапает стенку цилиндра.

Не удивительно, что задиры на G4KD, как правило, появляются снизу. При этом глубина может достигать 0,5 мм.

Что делать, и как убрать задиры в цилиндрах

Всего выделяется два базовых способа, позволяющих устранить проблему с задирами.

Кратко рассмотрим их особенности:

  1. Гильзовка. Применяется при наличии глубоких повреждений. Суть состоит в расточке полости цилиндров и установке специальных гильз из стали. Назначение последних состоит в восстановлении геометрией и размером. Расходы на восстановление мотора — от 80 до 120 т. р.
  2. Расточка. Этот способ ремонта применяется в более редких случаях. Для восстановления применяются специальные поршни, имеющие на 250-300 процентов большую стоимость. Такой метод хорош при неглубоких задирах. В ином случае расточка вообще не имеет значения из-за небольшой толщины цилиндра.

Кроме рассмотренных выше, существует и ряд альтернативных решений:

  1. Замена поршней, колец и пальцев. Это решение подходит для случаев, когда осмотр / обмер цилиндров не показал серьезных отклонений от заводских требований.
  2. Ревизия основных элементов. Если причина неисправности — перегрев, выполняется восстановление следующих устройств: термостат, водяной насос, радиатор и прочие.
  3. Замена катализатора. При проблемах с этим устройством нужно поменять саму деталь и поставить обманку для имитации работы.
  4. Установка нового EGR клапана. В случае его износа нужно поменять деталь или поставить заглушку во избежание проблем с впускной системой.

Присадки

Для защиты двигателя и борьбы с задирами применяются специальные присадки. Современный рынок предлагает множество вариантов.

«Супротек Актив Плюс»

Специальный состав, выпущенный компанией Suprotec (РФ). По своим характеристикам средство не уступает аналогам из США и Европы.

Принцип действия построен на создании металлизированного слоя, поддерживающего пленку на поверхности и исключающего риск дефицита масла.

Средство эффективно при небольших задирах. Если же они глубокие, применение присадки не дает больших результатов.

Инструкция по применению:

  1. Прогрейте мотор до рабочей температуры и заглушите.
  2. Перемешайте содержимое, чтобы смешать осадок с основной жидкостью.
  3. Налейте один флакон в горловину для заливки масла. Если объем смазки больше 7 л, нужно использовать Аква Премиум (еще один продукт производителя).
  4. Покатайтесь в течение 20-25 минут в обычном режиме, после чего можно пользоваться авто по полной.

Особенности полной обработки зависят от пробега машины.

Если авто проехало меньше 50 000 км, то алгоритм, следующий:

  1. Заливка одного флакона присадки.
  2. Поездка до очередной замены масла.
  3. После замены использование еще одного флакона Супротек Актив Плюс.
  4. Эксплуатация автомобиля в обычном режиме.

Для пробега свыше 50 000 км:

  1. Выполнение с первого по четвертый шаг.
  2. Замена масла / фильтра.
  3. Использование еще одного флакона Супротек Актив Плюс.

Maximum с ревитализантом 1 Stage

Специальное средство от компании XADO, представляющее собой атомарный кондиционер металла, предназначенный для улучшения характеристик двигателя.

Рекомендуется для снижения уровня шума / вибраций, экономии топлива, повышения надежности силового агрегата.

Также повышает компрессию, нормализует давление в системе и улучшает смазывающие свойства.

Процесс применения имеет следующий вид:

  1. Убедитесь, что температура не меньше +25 градусов Цельсия.
  2. Прогрейте мотор до рабочей температуры.
  3. Встряхните емкость.
  4. Добавьте жидкость в двигатель через отверстие для заливки масла.
  5. Запустите мотор и дайте ему поработать три-пять минут на холостых оборотах.

Присадка подходит для всех видов моторов, рекомендуется для повторного применения через 100 000 км.

Рекомендуется для применения в комплексе с маслом Хадо Атоми Оил и кондиционером металла АМС High Way.

Отметим, что компания XADO выпускает и ряд других присадок для улучшения смазывающих свойств двигателя и трансмиссий.

Resurs

Присадка, которая сразу после попадания в двигатель начинает действовать и улучшает характеристики силового агрегата.

В состав средства входят элементы меди, серебра и справа олова, которые покрывают поверхность специальной пленкой.

Благодаря высокотемпературному режиму и рабочему давлению происходит плавление состава и закрытие задиров.

Присадка подходит для всех типов смазки, а необходимый объем зависит от показаний на одометре и объема масла в моторе.

Рассмотрим основные варианты:

  1. Для 3-5-литровых моторов необходимо заливать 1 л при пробеге до 100 000 км и 2 л в остальных случаях.
  2. В ситуации с 6-10-литровыми силовыми агрегатами необходимо использовать 2 л при наличии на одометре показателя до 100 000 км и 3 л в остальных ситуациях.
  3. Для 10-12 литровых моторов с пробегом до 100 000 км нужно 3 л, от 100 до 170 т. км — 5 л, а все, что выше — 6 л.

Во избежание подделок важно смотреть, чтобы на торце упаковки была надпись ВМП Авто.

Этот символ свидетельствует о производителе и подтверждает оригинальность продукции.

Molygen Motor Protect

Современная присадка, изготовленная на базе органического соединения и вольфрама.

После добавления в масло двигателя происходит формирование мощной пленки, которая надежно защищает от трения и перегрузок.

Присадка подходит для применения в дизельных / бензиновых двигателей, сохраняет эффективность в течение 50 000 км. Добавляется из расчета 500 мл на 5 л. Рекомендуется для заливки сразу после замены масла.

Рассмотренные выше присадки — далеко не единственные на рынке. По желанию можно найти и другие средства, которые помогают в борьбе с задирами и повышают ресурс двигателя.

Но стоит учесть, что большая часть таких присадок применятся для профилактики и не эффективна при глубоких повреждениях.

В последнем случае могут потребоваться шаги, которые упоминались выше.

Для удобства приведем признаки, причин и решения в ситуации с появлением задиров на поршнях / стенках цилиндров.

Бензиновый двигатель: устройство,принцип работы,виды ,фото,видео.

Бензиновый двигатель – особый вид поршневого ДВС (двигателя внутреннего сгорания), в котором воспламенение ТС (смеси топлива и воздуха) в цилиндрах осуществляется принудительно при помощи электрической искры, а в качестве топлива используется бензин.

Виды бензиновых двигателей

Современные бензиновые двигатели можно классифицировать по нескольким категориям.

  1. По количеству цилиндров – с одним цилиндром, двумя цилиндрами и несколькими цилиндрами.
  2. По расположению цилиндров:
    • рядные двигатели (цилиндры расположены строго в ряд наклонным или вертикальным способом);
    • V-образные двигатели (цилиндры расположены под углом);
    • W-образные двигатели (цилиндры располагаются в четыре ряда под углом с коленвалом)
    • оппозитные двигатели (цилиндры расположены под углом 180 градусов)
  3. По способу получения топливной смеси – инжекторные, карбюраторные.
  4. По типу смазки — раздельные (масло находится только в картере), смешанные (масло смешивается с топливом).
  5. По методу охлаждения — охлаждение жидкостью, охлаждение воздухом.
  6. По типу циклов – двухтактные, четырехтактные.
  7. По типу подачи воздушной смеси в цилиндры — с наддувом, без наддува.

Устройство бензо двигателя

Бензиновый двигатель относится к классу двигателей внутреннего сгорания, в которых предварительно сжатая топливовоздушная смесь в цилиндрах поджигается при помощи искры. Управление мощностью в такого рода двигателях происходит посредством регулирования потока воздуха, попадающего в них, с помощью дроссельной заслонки.

Дроссельная заслонка (дроссель, дроссельный клапан) – это устройство, проходное сечение которого значительно меньше сечения подводящего трубопровода. Это устройство служит для регулирования количества подаваемого в камеру сгорания двигателя топливо-воздушной смеси.

Карбюраторная дроссельная заслонка является одним из видов дросселя: ее задача заключается в регулировании поступления горючей смеси в цилиндр двигателя (рис. 13).

Здесь рабочим органом является пластина, закрепленная на вращающейся оси, которая помещена в трубу, в которой протекает регулируемая среда. Этот механизм в просторечии принято именовать «газом».

Управление дросселем в автомобиле происходит с места водителя, при этом обычно предусматриваются два возможных способа привода: от руки рычажком или кнопкой (такой способ используется, например, в автомобилях для инвалидов) либо (что более распространено) с помощью педали, нажимаемой ногой водителя.

Рисунок 13. Дроссельная заслонка

КЛАССИФИКАЦИЯ БЕНЗИНОВЫХ ДВИГАТЕЛЕЙ

Существует определенная классификация бензиновых двигателей по различным параметрам.

✓ По способу смесеобразования. Существуют двигатели с внешним смесеобразованием, в которых данный процесс происходит вне цилиндра, и двигатели с внутренним смесеобразованием, в которых процесс происходит соответственно внутри цилиндра – это двигатели с непосредственным впрыском.

✓ По способу осуществления рабочего цикла выделяют двигатели четырехтактные и двухтактные. И у тех, и у других существуют свои преимущества и недостатки. Так, например, двухтактные двигатели обладают большей мощностью на единицу объема по сравнению с четырехтактными, однако коэффициент полезного действия (КПД) у них ниже. Двухтактные двигатели используются в основном там, где на первом месте стоит проблема малого размера двигателя, а не эффективность и высокая мощность – в мотоциклах, небольших автомобилях и т. д. Четырехтактные двигатели более распространены и используются в абсолютном большинстве транспортных средств.

✓ По числу цилиндров бывают одноцилиндровые, двухцилиндровые и многоцилиндровые двигатели.

✓ По расположению цилиндров выделяют двигатели с вертикальным или наклонным расположением цилиндров в один ряд (так называемые «рядные» двигатели); V-образные с расположением цилиндров под углом (если они расположены под углом 180°, то это двигатель с противолежащими цилиндрами – оппозитный двигатель).

✓ По типу охлаждения существуют двигатели воздушного (в основном устаревшие модели) и жидкостного охлаждения.

✓ По типу смазки существуют раздельный (когда масло находится в картере) и смешанный (когда масло смешивается с топливом) типы.

✓ По способу приготовления рабочей смеси. По этому параметру выделяются карбюраторные и инжекторные двигатели.

В настоящее время последние постепенно вытесняют первые.

ПРИНЦИП РАБОТЫ ЧЕТЫРЕХТАКТНОГО ДВИГАТЕЛЯ

Как уже следует из самого названия, рабочий цикл четырехтактного двигателя основывается на четырех этапах – тактах.

Первым из этих этапов является впуск. Он характеризуется тем, что в течение этого такта происходит опускание поршня из верхней мертвой точки (ВМТ) в нижнюю мертвую точку (НМТ).

Впуск происходит за счет того, что кулачки распределительного вала открывают впускной клапан, через который в цилиндр засасывается свежая порция воздушно-топливной смеси (рис. 14).

Рисунок 14. Принцип работы четырехтактного двигателя

Вторым тактом является сжатие. На этом этапе поршень, наоборот, проходит путь из НМТ в ВМТ; при этом рабочая смесь, полученная на первом этапе, сжимается. В этот момент происходит резкое повышение температуры рабочей жидкости. Главнейшим параметром на данном этапе является степень сжатия. Важность его определяется тем, что, чем выше степень сжатия, тем выше экономичность двигателя. Стоит однако подчеркнуть, что для двигателя с большой степенью сжатия требуется топливо с большим октановым числом, а оно всегда стоит дороже.

На третьем этапе во время рабочего хода поршня происходит сгорание топлива и расширение рабочей смеси.

Под степенью сжатия понимается отношение рабочего объема двигателя в НМТ к объему камеры сгорания в ВМТ.

С помощью искры от свечи зажигания поджигается топливовоздушная смесь, причем это происходит незадолго до конца цикла сжатия. В процессе прохождения поршня из ВМТ в НМТ топливо сгорает. Под воздействием тепла, выработанного при сгорании топлива, рабочая смесь расширяется и толкает поршень. Здесь одним из важнейших параметров является угол опережения зажигания, под которым понимается степень недоворота коленчатого вала до ВМТ в момент поджигания смеси. Дело в том, что давление газов должно достигнуть максимальной величины именно в тот момент, когда поршень находится в ВМТ, для чего и необходимо опережение зажигания.

Для регулировки угла опережения в современных двигателях используется электроника, в то время как в старых образцах это происходит с помощью механики.

В целом все это приводит к поставленной задаче – максимально эффективному использованию сгоревшего топлива. А учитывая то обстоятельство, что сгорание топлива занимает практически фиксированное время, то для повышения эффективности двигателя необходимо увеличить угол опережения зажигания при повышении оборотов.

Выпуск – четвертый такт. Работа на данном этапе происходит следующим образом: после выхода рабочего цикла из НМТ открывается выпускной клапан, в этот момент движущийся вверх поршень выталкивает отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл повторяется снова.

Однако стоит иметь в виду, что для начала следующего процесса (например, впуска) не обязательно должен быть полностью завершен предшествующий процесс (например, выпуск).

Подобное положение, когда открытыми оказываются одновременно оба клапана (впускной и выпускной), называется перекрытием клапанов. Более того, такое положение бывает специально предусмотрено и может служить для лучшего наполнения цилиндров горючей смесью и лучшей очистки цилиндров от отработанных газов.

К преимуществам четырехтактного двигателя можно отнести следующие характеристики: большой ресурс, большая (по сравнению с другими двигателями) экономичность, более чистый выхлоп, меньший шум, к тому же не требуется выхлопная система.

ПРИНЦИП РАБОТЫ ДВУХТАКТНОГО ДВИГАТЕЛЯ

В отличие от четырехтактного двигателя рабочий цикл двухтактного происходит в течение одного оборота коленчатого вала.

Из четырех тактов предыдущего двигателя в данном случае присутствуют только два – сжатие и расширение. Два других цикла – впуск и выпуск – заменены в таком двигателе процессом продувки цилиндра вблизи НМТ поршня. В этот момент свежая струя рабочей смеси вытесняет отработанные газы из цилиндра.

Если остановиться на этом подробнее, то рабочий цикл двухтактного двигателя выглядит следующим образом.

В то время когда поршень двигается вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно с этим поршень, движущийся вверх, создает разрежение в кривошипной камере (рис. 15).

Рисунок 15. Двухтактный двигатель: 1 – выпускной клапан; 2 – форсунка; 3 – продувочный насос; 4 – продувочные (впускные) окна

Под воздействием создаваемого разрежения клапан впускного коллектора открывается и свежая порция топливовоздушной смеси (обычно с добавлением масла) засасывается в кривошипную камеру.

В ходе движения поршня вниз повышается давление в кривошипной камере и клапан закрывается. Сам же процесс сгорания и расширения рабочей смеси происходит точно так же, как и в четырехтактном двигателе. Однако в момент движения поршня вниз открывается так называемое впускное окно (т. е. поршень перестает перекрывать его). Через это окно выхлопные газы, все еще находящиеся под большим давлением, устремляются в выпускной коллектор. Через некоторое время таким же образом поршень открывает впускное окно, которое расположено со стороны впускного коллек тора.

В это время свежая смесь выталкивается из кривошипной камеры идущим вниз поршнем и попадает в рабочую камеру двигателя, где окончательно вытесняет отработанные газы. Часть рабочей смеси при этом выбрасывается в выпускной коллектор. Во время движения поршня вверх часть свежей смеси, которая была вытолкнута из выпускного коллектора, засасывается обратно в кривошипную камеру.

При одинаковом объеме цилиндра двухтактный двигатель должен иметь почти в два раза большую мощность, чем четырехтактный. Однако это потенциальное преимущество далеко не всегда возможно полностью реализовать. Прежде всего это затрудняется недостаточной эффективностью продувки по сравнению с нормальным впуском и выпуском. Но все-таки при одинаковом литраже двухтактный двигатель мощнее в 1,5 или 1,8 раза.

Неотъемлемое преимущество двухтактного двигателя перед четырехтактным заключается в его компактных габаритах из-за отсутствия громоздкой системы клапанов и распределительного вала. К преимуществам двухтактного двигателя можно также отнести отсутствие громоздких систем смазки и газораспределения, большую мощность в пересчете на 1 л рабочего объема, простоту и дешевизну изготовления.

Преимущества и недостатки бензинового и дизельного двигателя

Если судить о преимуществах и недостатках бензинового и дизельного двигателя, то можно сразу сказать, что каждый из этих видов имеет свои плюсы и минусы, по которым нельзя назвать один двигатель лучше другого. И поэтому выбор одного из варианта двигателя зависит от конкретных потребностей и предпочтений автолюбителя. Итак, рассмотрим отдельно основные плюсы и минусы каждого из двигателей: К основным плюсам бензинового двигателя относительно дизельного можно отнести более удобную эксплуатацию – не требует перехода на зимнее топливо, более низкий уровень шума, большую экологичность, а так же большую удельную мощность объема, то есть достижение большей мощности при малых объемах двигателя.

Рассуждая о плюсах дизельного двигателя можно выделить его экономичность, которая достигается за счет более низкой цены на дизель, относительно бензина и более низкого потребления топлива. Нельзя не отметить, что к плюсам двигателя этого вида можно отнести более высокий крутящий момент, чем у бензинового двигателя, что очень полезно для грузовых автомобилей. А так же меньшую пожароопасность, благодаря тому, что дизельное топливо подвержено меньшей способности к возгоранию.

Карбюраторные и инжекторные двигатели.

Приготовление горючей смеси в карбюраторных двигателях происходит в специальном устройстве – карбюраторе, в котором осуществляется процесс смешивания топлива с потоком воздуха, за счет искусственной конвекции, создаваемой аэродинамическими силами потока воздуха, засасываемого двигателем.

В инжекторных двигателях процесс смесеобразования организован иначе. Топливо впрыскивается в воздушный поток, через специальные форсунки. Дозируется подача топлива электронным блоком управления, или (в более старых автомобилях) механической системой.

Первые инжекторные двигатели появились в 1997 году. Их внедрению способствовала корпорация OMC, которая выпустила двигатель, сконструированный с использованием технологии FICHT. Ключевым фактором этой технологии было использование специальных инжекторов, которые позволяли впрыскивать топливо сразу в камеру сгорания. Это революционное решение, в купе с использованием современного бортового компьютера, сделало возможным точное дозирование топлива, при перемещении поршня. В полость коленчатого вала впрыскивается чистое масло, без примесей топлива. Благодаря новой технологии конструкторам удалось изобрести двухтактный двигатель, который не уступал по экономичности карбюраторному четырехтактному двигателю, а также был компактным и легким.

Из-за новых стандартов на чистоту выхлопа, автомобильным производителям пришлось перейти от классических карбюраторных двигателей к инжекторным, а также установить современные нейтрализаторы выхлопных газов. Для функционирования катализатора необходим постоянный состав выхлопного газа, который поддерживается системой впрыска топлива. Обязательной составляющей катализатора является датчик содержания кислорода, благодаря которому отслеживается точное соотношение кислорода, недоокисленных продуктов сгорания топлива и оксидов азота, которые сможет нейтрализовать катализатор.

Дизельная, инжекторная, карбюраторная системы питания ДВС

Двигатель внутреннего сгорания (далее – ДВС) не зря считается сердцем автомобиля. Именно производимый им крутящий момент является первоисточником всех механических и электрических процессов, происходящих в транспортном средстве. Однако мотор не может существовать обособленно от обслуживающих его систем – смазки, питания, охлаждения и выпуска газов. Наиболее значимую роль при функционировании ДВС играет система питания двигателя (или топливная система).

Функции, устройство и принцип функционирования

бензобак

Каждый автомобиль характеризуется таким понятием, как «запас хода». Он определяется расстоянием, которое автомобиль способен преодолеть на полном топливном баке без дополнительных заправок. На данный показатель оказывают влияние самые различные факторы: сезонные, погодные и природные условия движения, характер дорожного покрытия, степень загруженности автомобиля, индивидуальные особенности водителя при управлении транспортным средством и т.д.). Однако главенствующую роль в определении «аппетита» автомобиля играет система питания и ее правильная работа.

Система питания выполняет функции:

  1. подачи топлива, его очистки и хранения;
  2. очистки воздуха;
  3. приготовления специальной горючей смеси;
  4. подачи смеси в цилиндры ДВС.

топливный насос

Классическая система питания автомобиля состоит из следующих структурных элементов:

  • топливного бака, предназначенного для хранения горючего;
  • топливного насоса, выполняющего функции создания давления в системе и принудительной подачи топлива;
  • топливопроводов – специальных металлических трубок и резиновых шлангов для транспортировки горючего из топливного бака к ДВС (а излишков топлива – в обратном направлении);
  • фильтра (или фильтров) очистки топлива;
  • воздушного фильтра (для очистки воздуха от примесей);
  • устройства приготовления топливно-воздушной смеси.

Система питания имеет достаточно простой принцип работы: под воздействием специального топливного насоса горючее из бака, предварительно пройдя процедуру очистки топливным фильтром, по топливопроводам подается к устройству, предназначенному для приготовления топливно-воздушной смеси. И уже затем смесь подается в цилиндры двигателя.

Варианты системы питания

Основными видами горючего для ДВС являются бензин и дизельное топливо («солярка»). Газ (метан) так же относится к видам современного топлива, но, несмотря на широкую применяемость, пока не получил актуальности.
Вид топлива является одним из критериев классификации систем питания ДВС.

В этой связи выделяют силовые агрегаты:

  1. бензиновые;
  2. дизельные;
  3. основанные на газообразном топливе.

Но наиболее признанной среди специалистов является типология систем питания двигателя по способу подачи топлива и приготовления топливно-воздушной смеси. Следуя данному принципу классификации, различаются, во-первых, система питания карбюраторного двигателя, во-вторых, система питания с впрыском топлива (или инжекторного двигателя).

Карбюратор

Карбюраторная система основана на действии технически сложного устройства – карбюратора. Карбюратор – это прибор, осуществляющий приготовление смеси топлива и воздуха в необходимых пропорциях. Несмотря на разнообразие видов, в автомобильной практике наибольшее применение получил поплавковый всасывающий карбюратор, принципиальная схема которого включает:

  • поплавковую камеру и поплавок;
  • распылитель, диффузор и смесительную камеру;
  • воздушную и дроссельную заслонки;
  • топливные и воздушные каналы с соответствующими жиклерами.

система питания карбюраторного двигателя

Подготовка топливно-воздушной смеси в карбюраторе осуществляется по пассивной схеме. Движение поршня в такте впуска (первом такте) создает в цилиндре разряженное пространство, в которое и устремляется воздух, проходя через воздушный фильтр и сквозь карбюратор. Именно здесь и происходит формирование горючей смеси: в смесительной камере, в диффузоре топливо, вырывающееся из распылителя, дробится воздушным потоком и смешивается с ним. Наконец, через впускной коллектор и впускные клапаны горючая смесь подается в конкретный цилиндр двигателя, где в необходимый момент и воспламеняется искрой от свечи зажигания.

Таким образом, система питания карбюраторного двигателя представляет собой преимущественно механический способ приготовления топливно-воздушной смеси.

Впрыск топлива

Эпоха карбюратора сменяется эпохой инжекторного двигателя, система питания которого основана на впрыске топлива. Ее основными элементами являются: электрический топливный насос (расположенный, как правило, в топливном баке), форсунки (или форсунка), блок управления ДВС (так называемые «мозги»).

система питания инжекторного двигателя

Принцип работы указанной системы питания сводится к распылению топлива через форсунки под давлением, создаваемым топливным насосом. Качество смеси варьируется в зависимости от режима работы двигателя и контролируется блоком управления.
Важным компонентом такой системы является форсунка. Типология инжекторных двигателей основывается именно на количестве используемых форсунок и места их расположения.

Так, специалисты склонны выделять следующие варианты инжектора:

  1. с распределенным впрыском;
  2. с центральным впрыском.

Система распределенного впрыска предполагает использование форсунок по количеству цилиндров двигателя, где каждый цилиндр обслуживает собственная форсунка, участвующая в подготовке горючей смеси. Система центрального впрыска располагает только одной форсункой на все цилиндры, расположенной в коллекторе.

Особенности дизельного двигателя

Как бы особняком стоит принцип действия, на котором основывается система питания дизельного двигателя. Здесь топливо впрыскивается непосредственно в цилиндры в распыленном виде, где и происходит процесс смесеобразования (смешивания с воздухом) с последующим воспламенением от сжатия горючей смеси поршнем.
В зависимости от способа впрыска топлива, дизельный силовой агрегат представлен тремя основными вариантами:

  • с непосредственным впрыском;
  • с вихрекамерным впрыском;
  • с предкамерным впрыском.

непосредственный впрыск

Вихрекамерный и предкамерный варианты предполагают впрыск топлива в специальную предварительную камеру цилиндра, где оно частично воспламеняется, а затем перемещается в основную камеру или собственно цилиндр. Здесь горючее, смешиваясь с воздухом, окончательно сгорает. Непосредственный же впрыск предполагает доставку топлива сразу же в камеру сгорания с последующим его смешиванием с воздухом и т.д.

Еще одна особенность, которой отличается система питания дизельного двигателя, заключается в принципе возгорания горючей смеси. Это происходит не от свечи зажигания (как у бензинового двигателя), а от давления, создаваемого поршнем цилиндра, то есть путем самовоспламенения. Иными словами, в этом случае нет необходимости применять свечи зажигания.

Однако холодный двигатель не сможет обеспечить должный уровень температуры, требуемый для воспламенения смеси. И использованием свечей накаливания позволит осуществить необходимый подогрев камер сгорания.

Режимы работы системы питания

В зависимости от целей и дорожных условий водитель может применять различные режимы движения. Им соответствуют и определенные режимы работы системы питания, каждому из которых присуща топливно-воздушная смесь особого качества.

  1. Состав смеси будет богатым при запуске холодного двигателя. При этом потребление воздуха минимально. В таком режиме категорически исключается возможность движения. В противном случае это приведет к повышенному потреблению горючего и износу деталей силового агрегата.
  2. Состав смеси будет обогащенным при использовании режима «холостого хода», который применяется при движении «накатом» или работе заведенного двигателя в прогретом состоянии.
  3. Состав смеси будет обедненным при движении с частичными нагрузками (например, по равнинной дороге со средней скоростью на повышенной передаче).
  4. Состав смеси будет обогащенным в режиме полных нагрузок при движении автомобиля на высокой скорости.
  5. Состав смеси будет обогащенным, приближенным к богатому, при движении в условиях резкого ускорения (например, при обгоне).

Выбор условий работы системы питания, таким образом, должен быть оправдан необходимостью движения в определенном режиме.

Неисправности и сервисное обслуживание

В процессе эксплуатации транспортного средства топливная система автомобиля испытывает нагрузки, приводящие к ее нестабильному функционированию или выходу из строя. Наиболее распространенными считаются следующие неисправности.

Недостаточное поступление (или отсутствие поступления) горючего в цилиндры двигателя

Некачественное топливо, длительный срок службы, воздействие окружающей среды приводят к загрязнению и засорению топливопроводов, бака, фильтров (воздушного и топливного) и технологических отверстий устройства приготовления горючей смеси, а также поломке топливного насоса. Система потребует ремонта, который будет заключаться в своевременной замене фильтрующих элементов, периодической (раз в два-три года) прочистке топливного бака, карбюратора или форсунок инжектора и замене или ремонте насоса.

Потеря мощности ДВС

Неисправность топливной системы в данном случае определяется нарушением регулировки качества и количества горючей смеси, поступающей в цилиндры. Ликвидация неисправности связана с необходимостью проведения диагностики устройства приготовления горючей смеси.

Утечка горючего

Утечка горючего – явление весьма опасное и категорически не допустимое. Данная неисправность включена в «Перечень неисправностей…», с которыми запрещается движение автомобиля. Причины проблем кроются в потере герметичности узлами и агрегатами топливной системы. Ликвидация неисправности заключается либо в замене поврежденных элементов системы, либо в подтягивании креплений топливопроводов.

Таким образом, система питания является важным элементом ДВС современного автомобиля и отвечает за своевременную и бесперебойную подачу топлива к силовому агрегату.

Источник https://autotopik.ru/dvigatel/zadiry-v-tsilindrah-prichiny-i-sposoby-ih-ustraneniya.html

Источник https://seite1.ru/zapchasti/benzinovyj-dvigatel-ustrojstvoprincip-rabotyvidy-fotovideo/.html

Источник https://znanieavto.ru/toplivo/sistema-pitaniya-dvigatelya-avtomobilya.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: