Disgear » Как работает CAN-шина и для чего она нужна в автомобиле?

Что такое CAN-шина, для чего она нужна и как работает в автомобиле?

Что такое CAN-шина в автомобиле Что такое CAN шина в сигнализации автомобиля и принцип работы: установка и подключение своими руками, фото и видео, как сделать анализатор Что такое автомобильная CAN-shina и для чего она нужна?

Для коммуникаций между точками подключения и базой необходимо использовать какую-то разводку. Избавиться от чрезмерной паутины проводов помогают специальные шины. Кроме автомобильной отрасли их могут задействовать и для других целей.

Что такое CAN шина в машине

Тем автомобилистам, которые хотят узнать, что это такое, не стоит обращаться к каталогам зимней или летней резины. Рекомендуем углубить свои знания в электронике.

CAN шина автомобиля – это часть электронной системы автомобиля, предназначенная для быстрого мониторинга технического состояния транспортного средства в целом и отдельных его элементов и систем.

В машину CAN-шина монтируется для объединения датчиков и процессоров в единую информационную сеть, помогающую синхронизации команд и обработке информации. Благодаря ей происходит сбор данных и мгновенный обмен ими. За счет параллельного подключения обеспечивается возможность корректировки отправляемых сигналов для систем или узлов через датчики на лету.

CAN является аббревиатурой и расшифровывается как Controller Area Network, что может переводиться как «сеть из контроллеров». Фактически шина занимается приемом информации от расположенных вокруг устройств и отправкой данных на такие устройства. Разработка и первые внедрения стандарта проводились еще более трех десятилетий назад.

BMW 8 Series E31 (1989-1999) – убийца Феррари Устройство кан шины

Сегментация CAN шины по функциональному назначению

  • Как правило разные, сегменты сети разделены специальным устройством, которое называется Гейтвей (Gateway, ZGW, ETACS, ICU) .
  • В роли гейтвея может выступать панель приборов (для простых автомобилей) или отдельный специальный модуль межсетевого интерфейса.
  • Гейтвей разделяет потоки данных в разных сегментах сети и обеспечивает связь сегментов сети работающих на разных скоростях.
  • ВАЖНО: На многих автомобилях (особенно VAG, MB, BMW) CAN шина в диагностическом разъеме OBD2 отделена от других участков сети при помощи гейтвея, поэтому подключившись к CAN шине OBD разъема невозможно увидеть поток данных. В этом случае можно увидеть только обмен между диагностическим инструментом и автомобилем во время процесса диагностики! Так же модулем гейтвеем оборудованы автомобили японских марок с 2021..2018 годов в зависимости от модели.
  • ОБЯЗАТЕЛЬНО изучайте схемы на исследуемый автомобиль, чтобы знать к какому сегменту сети Вы подключаетесь!

Схема ниже изображена в общем виде для упрощения понимания роли Гейтвея. Количество CAN шин и варианты включения блоков управления к тому или другому сегменту сети могут отличаться.



Устройство шины и где располагается

Визуально CAN является блоком из пластика, внутри которого располагаются печатные платы. С внешней стороны шины чаще всего находится универсальный разъем, предназначенный для подсоединения различных кабелей.

За цифровой интерфейс отвечают встроенные проводники, которые принято называть CAN. Подключение осуществляется через специальный кабель.

Подключение CAN шины

В разных марках автомобилей шины расположены могут быть в разных местах. Конкретную область, где вмонтирован блок, можно узнать из инструкции по эксплуатации автомобиля. Чаще всего такую электронику располагают в салоне транспортного средства, скрывая ее контрольным щитом. В некоторых брендах принято устанавливать электронный узел в подкапотной области.

Технические характеристики

От эксплуатационных параметров зависит скорость взаимодействия между элементами системы, а также качество связи между ними. Чаще всего характеристики большинства современных шин имеют следующие значения:

  • информация по проводной бортовой сети передается со скоростью примерно 1 Мб/с;
  • в процессе обмена данными между отдельными блоками управления показатель скорости снижается до 500 кб/c;
  • информация передается в интерфейсах, аналогичных «Комфорт», с невысокой скоростью – близко к 100 кб/с.

Чем новей модель автомобиля, тем прогрессивней в ней стоит разводка. При возможных неполадках придется искать аналоги.

Принцип работы

У каждого элемента в системе предусмотрен специальный идентификатор, так как работает электроника по принципу передачи закодированных сообщений. Таким образом удается распознавать различного рода информацию, например, «авто движется со скоростью 60 км/ч» или «скорость вращения коленвала 2000 об/мин». Проверка осуществляется индикатором. Если информация в сообщении относится к сфере конкретного блока, то она проходит обработку, в противном случае данные игнорируются.

Стандартная длина идентификатора лимитирована 11 либо 29 битами. Конструкция каждого информационного передатчика рассчитана также на считывание параметров, отправляемых по интерфейсу. Для узлов, обладающих невысоким приоритетом, характерно освобождение потока данным от доминантных устройств. Таким образом последний тип не искажает процесс передачи.

Пакеты данных от приоритетных устройств курсируют с первоочередной срочностью, незатронутые искажением. Если произошла потеря связи сети с каким-либо передатчиком, то электроника автоматически проводит восстановление.

Интерфейс шины в автомобиле, подключенный к модулю автозапуска либо к сигнализации, способен запускаться и работать в разных режимах:

  1. Фоновый режим. В некоторых источниках его называют спящим либо автономным. При его запуске остальные системы автомобиля отключаются. Хотя видимых явных признаков нет, как он работает, но питание от бортовой сети к цифровому интерфейсу отправляется. При этом значение напряжения будет минимальным, так как такая CAN шина быстро разрядит аккумулятор в автомобиле.
  2. Запуск или пробуждение. Запуск осуществляется после того, как автомобилист вставляет в замочную скважину ключ и активирует подобным способом зажигание. Когда в автомобиле стоит кнопка «Пуск/стоп», то режим стартует после ее нажатия. Происходит стабилизация напряжения. На контроллеры и датчик поступает электропитание.
  3. Активация. После перехода в данный режим исполнительное устройство начинает обмен данными с встроенными регуляторами. Заметно поднимается напряжение в цепи, так как интерфейс шины CAN работает с потреблением до 80-85 мА.
  4. Деактивация. В режим засыпания система переходит после остановки двигателя. Также в это время перестают работать и обмениваться данными включенные в сеть к шине узлы и системы. Происходит их отключение от сети.

Переходник для CAN шины автомобиля

Выход в рабочий режим и прекращение работы занимает считанные доли секунды. Все случается без непосредственного вмешательства пользователя в автоматическом режиме.

Приложения CAN

CAN является идеальным решением для любого приложения, где микроконтроллеры обмениваются сообщениями друг с другом и с удаленными периферийными устройствами. Изначально CAN использовался в автомобилях для обеспечения критичного по времени управления и обмена информацией между двигателем и коробкой передач при гарантированном времени ожидания сообщения и допуске каждого из участников сети к работе с текущими данными. Наряду с достаточно дорогими высокоскоростными решениями существуют и экономичные решения для подключения к сети инерционных устройств, которые работают в шкале времени сотен микросекунд (система управления дверьми, подъемник окна, управление зеркалом). При этом мощные жгуты электрических проводов заменяются двухпроводной CAN-сетью, узлами которой являются, в том числе, тормозные огни и указатели поворота.

Широкое применение CAN нашел в промышленной автоматике, где имеется большое число устройств управления, датчиков, механизмов, электроприводов и других объектов, которые связаны единым технологическим циклом (системы отопления и кондиционирования, насосы, конвейеры, лифты, эскалаторы, транспортеры и т. д.). Важной особенностью таких систем является возможность диагностики и управления объектами, расположенными на большой территории, по адаптивным алгоритмам. В результате достигается существенное уменьшение потребляемой мощности, шума, износа оборудования. Подобная картина наблюдается и в железнодорожных бортовых системах, где решающую роль играет обмен данными между подсистемами при наборе скорости, торможении, управлении дверьми и диагностике.

Преимущества и недостатки встроенных шин

Как и у каждой системы у CAN-шины есть свои позитивные негативные характеристики. Основные плюсы заключаются в таких факторах:

  • за счет высокого быстродействия устройства способны практически мгновенно связываться пакетными данными;
  • кабельные установки выдерживают воздействие электромагнитых помех;
  • электроника наделена системой контроля с несколькими уровнями, что способствует минимизации возникновения ошибок во время приема/передачи пакетов данных;
  • за счет автоматики шина самостоятельно распределяет по CANалам скорость, оказывая позитивное влияние на работу электронных систем в целом;
  • производители позаботились о достаточной степени безопасности цифрового интерфейса, поэтому внешние несанкционированные подключения будут мгновенно заблокированы;
  • использование в конструкции цифрового интерфейса позволяет без проблем осуществлять монтаж сигнализации либо иных систем безопасности с минимальным взаимодействием с бортовой штатной системой.

Важно знать минусы установки шин:

  • определенные модели интерфейсов рассчитаны на лимитированный объем пакетных данных, что является малоприемлемым для современных автомобилей, нашпигованным большим количеством электроники. Если добавлять к шине новых источников данных, то это негативно скажется на нагрузке, а также существенно повысит время отклика оборудования;
  • передаваемые данные по каналам связи обладают исключительным назначением. Полезная информация отнимает минимум трафика;
  • может случаться отключение стандартизации из-за внедрения протокола повышенного уровня.

Интерфейс CAN-шины

Более стабильно работают интерфейсы последних поколений. Предпочтительней выбирать машины с такими шинами.

Разновидности CAN

В настоящее время доступны различные устройства с CAN-интерфейсом, которые помимо передачи данных из одной точки в другую позволяют реализовать синхронизацию процессов и обслуживание по приоритетам. Более ранние реализации CAN-контроллеров используют кадры с 11-разрядным идентификатором и возможностью адресации до 2048 сообщений и соответствуют спецификации CAN V. 2.0A. Такие контроллеры носят название Basic CAN и характеризуются сильной загруженностью центрального процессора (ЦПУ), так как каждое входящее сообщение запоминается в памяти и ЦПУ решает, нужны ему данные сообщения или нет (рис. 4). Контроллеры Basic CAN содержат один передающий буфер и один или два приемных буфера сообщений. Чтобы послать или получить сообщение, требуется задействовать ЦПУ через прерывания «сообщение_послано» и «сообщение_получено». В результате проверки каждого входящего сообщения загрузка ЦПУ очень велика, что ограничивает реальную скорость обмена по сети. По этой причине такие контроллеры используются в сетях CAN с низкой скоростью обмена и/или малым количеством сообщений.

Рис. 4. Структура контроллера Basic CAN

Большинство выпускаемых сегодня CAN-контроллеров используют расширенные кадры сообщений с идентификатором длиной 29 разрядов, что позволяет адресовать до 536 млн сообщений. Такие контроллеры соответствуют спецификации CAN V. 2.0B (active) и называются контроллеры Full-CAN. В них предусмотрен буфер для нескольких сообщений, причем каждое сообщение имеет свою маску, и фильтрация осуществляется по соответствию идентификатора маске.

В случае Full-CAN ЦПУ максимально разгружено, поскольку не обрабатывает ненужные сообщения (рис. 5). При приеме сообщения с идентификатором, соответствующим маске, оно запоминается в специальной зоне двухпортового ОЗУ, и работа ЦПУ прерывается. Full-CAN имеет также специальный тип сообщения, которое означает: «у кого бы ни находилась эта информация, пожалуйста, пошлите ее сейчас же». Контроллер Full-CAN автоматически прослушивает все сообщения и посылает запрошенную информацию.

Рис. 5. Структура контроллера Full-CAN

До недавнего времени в промышленности был широко распространен Basic CAN с 11-разрядным идентификатором. Этот протокол допускает простую связь между микроконтроллерами и периферийными устройствами при скорости обмена вплоть до 250 Кбит/с. Однако при стремительном удешевлении CAN-контроллеров использование Full-CAN стало оправданным и для связи с медленными устройствами. Если в промышленных приложениях требуется высокоскоростной (до 1 Мбит/с) обмен данными, то непременно следует использовать Full-CAN.

Маркировка и разновидности

Со своей задачей связи дополнительных устройств с ЭБУ большинство шин успешно справляется, работая в бесперебойном режиме. В такой ситуации используется протокол CAN ISO 15765-4.

Принято условно делить CAN на группы:

  1. CAN2, 0В. Маркировка характерна для оборудования, используемого в 11-битном формате. При этом необходимо учитывать, что информация о потенциальных ошибках будет отправляться на микропроцессоры во время обнаружения 29-битных идентификаторов.
  2. CAN2, 0А. Эта маркировки задействуется для устройств с 11-битными форматами обмена данными. У разновидности отсутствует потенциал выявления ошибок от 29-битных модулей.

Пользователи выделяют три категории интерфейсов:

  1. Первая категория предназначена для автомобильного двигателя. После подключения подобных видов интерфейсов улучшиться коммуникация с управляющей системой по дополнительному каналу. За счет такой шины удается качественно синхронизировать работу ЭБУ с другими узлами.
  2. Вторая категория является разновидностью «Комфорт». Интерфейс востребован для обеспечения коннекта с подогревом кресел, управлением зеркалами, комфортными регулировками и пр.
  3. Третья категория относится к разряду командно-информационных разновидностей. Применяется для соединения с обслуживающими системами, например, для подключения навигации или смартфона.

Используются протоколы, согласно которым предусмотрены разные типы команд, отправляемые по CAN.

Разновидность функций шин

Рассмотрим, какие существуют функции у различных девайсов.

Девайс для автомобильного двигателя

При соединении устройства обеспечивается быстрый канал передачи данных, по которому информация распространяется со скоростью 500 кбит/с. Основное предназначение шины заключается в синхронизации работы управляющего модуля, к примеру, коробки передач и мотора.

Устройство типа Комфорт

Скорость передачи данных по этому каналу более низкая и составляет 100 кбит/с. Функция такой шины заключается в соединении всех устройств, относящихся к данному классу.

Информационно-командный девайс

Скорость передачи данных такая же, как и в случае с устройствами типа Комфорт. Главная задача шины заключается в обеспечении связи между обслуживающимися узлами, к примеру, мобильным девайсом и системой навигации.

Шины от разных производителей приведены на фото.


1. Устройство для автомобильного ДВС


2. Интерфейсный анализатор

Потенциальные проблемы

Так как шина находится в связи с большим количеством элементов, то некорректная работа способна приводить к негативным результатам эксплуатации. Это может сказаться не только на работоспособности авто, но и на безопасности вождения.

Сообщать о неисправности система может косвенными признаками. Водителям стоит на нее обратить внимание, в следующих случаях:

  • загорелся индикатор Check Engine;
  • беспричинно практически одновременно бортовой щиток засветился несколькими иконками, например, стояночный тормоз, подушки безопасности, высокое давление смазки и пр.
  • считывание информации на приборной доске стало невозможным, так как не выводится информация о температуре охлаждения, уровне топлива и пр.

Необходимо заняться обязательным более точным тестирование. Квалифицированно его смогут провести на станции техобслуживания, потому что автосервисы оснащены профессиональным оборудованием.

Новичку о подключении к CAN шине

Для работы с CAN шиной автомобиля необходимо знать:

CAN шина – это сеть обмена данными определенная в стандарте ISO 11898. Другие каналы обмена данными в автомобиле не могут быть названы CAN шиной. AVC-LAN, BEAN, J1708, VAN и другие старые протоколы это НЕ CAN !

В автомобиле может быть более одной CAN шины. Для каждого функционального сегмента автомобиля выделяется своя сеть CAN. Выделенные сети могут работать на разных скоростях.

Скорости работы CAN шины

CAN на разных автомобилях и в разных сегментах сети может работать на разных скоростях.

Названия сегментов сети: Мотор, Шасси, Комфорт, Салон – условны! У Каждого автопроизводителя свои названия этих участков сети!

  • Группа VAG: Моторшасси – 500 кбитс, Комфорт – 100 кбитс и с 2018 года шина Комфорт может иметь скорость 500 кбитс., Диагностика: 500 кбитс.
  • BMW : МоторШасси – 500кбитс, Комфорт – 100 кбитс и с 2018 года шина Комфорт может иметь скорость 500 кбитс., Диагностика: 500 кбитс.
  • Mercedes-Benz : МоторШасси – 500 кбитс, Комфорт 83.333 кбитс, 250 кбитс, Диагностика: 500 кбитс.
  • Ford, Mazda : МоторШасси – 500 кбитс, Комфорт 125 кбитс. (Для Ford может быть больше вариантов)
  • KIAHyundai : МоторШасси – 500 кбитс, Комфорт 125 кбитс, 500 кбитс, Мультимедиа: 125 кбитс, 500 кбитс., Диагностика: 500 кбитс.
  • GM : МоторШасси – 500 кбитс, Комфорт: 33.333 кбитс, 95.2 кбитс, Диагностика: 500 кбитс.
  • Toyota, Nissan, Honda, Subaru, Suzuki : 500 кбитс (может использоваться гейтвей)
  • Mitsubishi : МоторШасси: 500 кбитс, СалонКомфорт – 83.333 кбитс, 250 кбитс, Диагностика: 500 кбитс.
  • Volvo : МоторШасси: 500 кбитс, СалонКомфорт – 500 кбитс, 125 кбитс, Диагностика: 500 кбитс.
  • Renault : 500 кбитс
  • Peugeot : МоторШасси – 500 кбитс, Комфорт 125 кбитс.
  • Lada : 500 кбитс
  • Коммерческая и специальная техника : Стандарт J1939 250 или 500 кбитс.

Сегментация CAN шины по функциональному назначению

  • Как правило разные, сегменты сети разделены специальным устройством, которое называется Гейтвей (Gateway, ZGW, ETACS, ICU) .
  • В роли гейтвея может выступать панель приборов (для простых автомобилей) или отдельный специальный модуль межсетевого интерфейса.
  • Гейтвей разделяет потоки данных в разных сегментах сети и обеспечивает связь сегментов сети работающих на разных скоростях.
  • ВАЖНО: На многих автомобилях (особенно VAG, MB, BMW) CAN шина в диагностическом разъеме OBD2 отделена от других участков сети при помощи гейтвея, поэтому подключившись к CAN шине OBD разъема невозможно увидеть поток данных. В этом случае можно увидеть только обмен между диагностическим инструментом и автомобилем во время процесса диагностики! Так же модулем гейтвеем оборудованы автомобили японских марок с 2016..2018 годов в зависимости от модели.
  • ОБЯЗАТЕЛЬНО изучайте схемы на исследуемый автомобиль, чтобы знать к какому сегменту сети Вы подключаетесь!

Схема ниже изображена в общем виде для упрощения понимания роли Гейтвея. Количество CAN шин и варианты включения блоков управления к тому или другому сегменту сети могут отличаться.

Реализации CAN на уровне электрических сигналов

CAN шина может быть реализована физически тремя способами:

1 ISO11898-2 или CAN-High Speed.

Классическая витая пара нагруженная с обоих концов резисторами 120 Ом.

В этом случае уровни на шине CAN выглядят так:

Для такой реализации сети используются как правило обычные CAN трансиверы в 8 выводном корпусе, аналоги PCA82C250, TJA1050 и им подобные. Работает такая конфигурация на скоростях 500 кбитс и выше. (Но могут быть исключения) .

2 ISO11898-3 или CAN-Low Speed или Faut Tolerant CAN

В этом варианте используется та же витая пара, но линии CAN-Low и CAN-High подтянуты к напряжению питания и массе соответственно.
Подробное описание FT-CAN по ссылке
Такой вариант CAN шины способен переключаться в однопроводный режим в случае повреждения одной из линий. Работает на скоростях до 250 кбитс.Уровни сигнала на шине отличаются от High Speed CAN, при этом не теряется возможность работы с шиной FT-CAN используя трансиверы High-Speed CAN и соблюдая ряд условий.
Подробнее в нашей статье о FT-CAN – ссылка.

Fault tolerant CAN обычно используется для низкоскоростного обмена между блоками управления относящимися к сегменту сети СалонКомфортМультимедиа.

ВАЖНО: При подключении к шине Faul tolerant CAN, подключать терминальный резистор 120 Ом между линиями CAN-High и CAN-Low НЕ НУЖНО !

3 Single Wire CAN или SW-CAN

Однопроводный вариант шины CAN. Работает на скорости 33.333 кбитс

Используется специальный тип трансиверов. Для того что бы подключиться к такому варианту шины CAN необходимо линию CAN-High анализатора подключить к шине SW-CAN а линию CAN-Low к массеземле.

Источник https://truescooters.ru/tehservis/can-shina-avtomobilya.html

Источник https://canhacker.ru/cannewbie/

Источник

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: