Как научиться читать электрические (принципиальные) схемы начинающему

Содержание

Как читать принципиальные схемы и радиодетали (УГО)

В принципиальных схемах проводники (или дорожки) обозначаются линиями.

Как читать схемы
Так обозначаются проводники, которые пересекаются, но они не имеют общего соединения и электрически друг с другом не связаны.
Чтение принципиальных схем

Как правильно читать схемы

Общая точка

Часто у начинающих радиолюбителей возникает вопрос — что это за символ на схеме?
Что такое общая точка
Это общая точка (GND, земля). Раньше ее называли общим проводом. Так обозначается единый провод питания. Обычно это минус питания. Раньше на схемах могли сделать общим проводом и плюс питания. В данном случае схема без общей точки выглядела бы вот так:Как правильно читать электрические схемы
Общая точка с однополярным питанием визуально лучше и компактнее выглядит, чем если просто сделать единую линию между ними.

Еще общей точкой ее называют потому, что относительно нее можно измерять любые остальные точки на схемах. Например, ставите щуп мультиметра на общую точку, а вторым щупом можете проверить любую часть цепи на схеме.

Почему она может называться землей (GND)? Раньше в качестве общего провода могло использоваться шасси корпуса прибора. Из-за этого возникла путаница между заземлением и землей. Оно интерпретируется в контексте схемы. Та схема, что была разобрана выше — общая точка (земля) это просто минус питания. Другое дело это двуполярные источники тока и заземление.

Двуполярное питание и общая точка

Общая точка и двуполярное питание

В двуполярном питании общая точка — это средний контакт между плюсом и минусом.

Заземление

Заземление и общая точка

Примером заземления может послужить фильтр в компьютерных блоках питания.

С конденсаторного фильтра помехи идут на корпус блока питания. Это и есть заземление. А с блока питания они должны уходить в розетку, если у вас есть заземление, иначе сам корпус блока питания может быть под напряжением. Токи там не большие, они не опасны для жизни. Это делается с целью уменьшения импульсных помех в блоке питания и безопасности.

Иногда в блоках питания вместо корпуса помехи с конденсатора идут на общую точку. Это все зависит от конструкции и схемотехники. В этом случае помех будет больше, чем с заземлением.

А вообще, на схемах есть разные заземления. Например, в цифровой технике разделяют аналоговую землю и цифровую. чтобы не нарушать режимы работы схемы. Импульсные помехи могут повлиять на аналоговую часть схемы.

Номиналы радиодеталей

Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.

К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.

Есть еще один общепринятый стандарт. На схемах указываются номиналы некоторых деталей и их рабочие напряжения.

Например, на этой схеме есть два резистора.
По умолчанию сопротивление без приставки пишется только числом. У R2 сопротивление равно 220 Ом. А у R3 после числа есть буква. Сопротивление этого резистора читается как 2,2 кОм (2 200 Ом).

Рассмотрим на схеме два конденсатора.

В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.

Нанофарады обозначаются как nF.

Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.

Что такое даташит и для чего он нужен

Даташит (Datasheet) — это техническая спецификация, в которой указывается полная информация о радиодетали. Вся техническая информация, основная схема включения, параметры и типы корпусов указываются именно в этом документе.

Даташиты бывают на разных языках, в основном на английском. Есть и переведенные варианты.

Документация на микросхему NE555. Нарисован корпус и внешний вид детали.

Здесь подробно описывается микросхема, ее параметры и условия работы.

Такая документация есть на любую деталь. Это очень удобно и информативно, особенно при поиске аналогов. А помощью интернета поиск аналога деталей или схемы стал еще проще.

Еще даташит позволяет опознать неизвестную деталь или микросхему. Достаточно написать ее название в поисковике, добавить слово даташит, и в результатах поиска будет вся документация.

Как научиться читать принципиальные схемы

На самом деле есть только несколько способов. Это теория и практика. Если вы выучите обозначение радиодеталей, это еще не значит, что вы выучили схемотехнику. Это все равно, что выучить азбуку, но без грамматики и практики вы не выучите язык.

Теория — это схемотехника, книги, описание принципа работы схемы. Практика — это сборка устройств, ремонт и пайка.

Как читать принципиальные схемы

Например простая схема усилителя на одном транзисторе.

Вход X1 плюс (левый или правый канал), X2 минус. Звуковой сигнал поступает на электролитический конденсатор C1. Он защищает транзистор VT1 от замыкания, поскольку транзистор VT1 постоянно открыт при помощи делителя напряжения на R1 и R2. Делитель напряжения устанавливает рабочую точку на базе транзистора VT1, и транзистор не искажает входной сигнал. Резистор R3 и конденсатор C2, которые подключены к эмиттеру транзистора VT1, выполняют функцию термостабилизации рабочей точки при повышении температуры транзистора. Электролитический конденсатор C3 накапливает и фильтрует питающее напряжение. Динамическая головка BF1 служит выходом звукового сигнала.

Можно ли это понять, только выучив обозначения радиодеталей без схемотехники и теории? Навряд-ли.

Еще сложнее дело обстоит с цифровой техникой.

Как научиться читать электронные схемы

Что это за микроконтроллер, какие он функции выполняет, какая прошивка и какие фьюзы в нем установлены? А вторая микросхема, какой это усилитель? Без даташитов и описания к схеме не получится понять ее работу.
Изучайте схемотехнику, теорию и практику. Просто выучив название деталей не получится разобраться в схемотехнике. Обозначение радиодеталей выучиться само по себе по мере практики и накопления знаний. Еще все зависит от выбранной отрасли. У связистов одна схемотехника, у ремонтников мобильной техники другая. А те, кто занимается звуком, не очень поймут электриков. Как и наоборот. Чтобы понять другую отрасль, ее схемотехнику и принципы работы нужно в нее погрузиться.

Принципиальные схемы это своего рода язык, у которого есть разные диалекты.

Поэтому, не следует строить иллюзии. Изучайте схемотехнику и собирайте схемы.

Принципиальные схемы помогают собирать устройства, и при изучении теории, понимать работу устройства. Без знаний и опыта, схема это просто схема.

Обозначения радиодеталей на принципиальных схемах

УГО — это условно графическое изображения радиодетали на схеме. Некоторые УГО различаются друг от друга.

Например, в США обозначение резисторов отличается от СНГ и Европы.

Обозначения радиодеталей СНГ, Европа и США

Из-за этого меняется восприятие схемы.

Однако внешне и по обозначениям они похожи. Или например, транзисторы. Где-то они чертятся с кругами, а где-то без. Могут различаться размеры и угол стрелок. В таблице представлены УГО отечественных радиодеталей.

Простые схемы для начинающих. Учимся читать электросхемы

Перед тем, как изучать радиотехнику или электронику, нужно понять, зачем именно это нужно человеку. Если это увлечение на пару дней или месяцев, то лучше сразу бросить затею, поскольку, если относиться к электронике халатно и не соблюдать меры предосторожности, можно нанести сильный вред своему организму.

Если данная сфера увлекала еще с детства, но не было времени начать заниматься, то сейчас самое время начать. Постепенное погружение подразумевает:

  • Получение или закрепление теоретических знаний физики. Для начала достаточно будет школьных знаний по электрофизике, включающих подробное изучение закона Ома – основы всей электрики.
  • Ознакомление с теорией. От более абстрактных вещей физики следует перейти к более осязаемым. Теория подразумевает точное и полное описание всех понятий, деталей, инструментов и приборов, которые будут использоваться на практике. Садиться и начать что-либо паять без теоретических основ не получится.
  • Применение на практике. Логическое завершение теории, позволяющее закрепить весь изученный материал и применить его при создании конкретных схем или приборов.

Простые схемы для начинающих. Учимся читать электросхемы

Закон Ома

Шаг 1: Напряжение, ток, сопротивление

1

Эти понятия являются фундаментальными и без знакомства с ними продолжать обучение основам было бы бессмысленно. Давайте просто вспомним, что каждый материал состоит из атомов, а каждый атом в свою очередь имеет три типа частиц.

Электрон — одна из этих частицы, имеет отрицательный заряд. Протоны же имеют положительный заряд. В проводящих материалах (серебро, медь, золото, алюминий и т.д.) есть много свободных электронов, которые перемещаются хаотично. Напряжение является той силой, которая заставляет электроны перемещаться в определенном направлении.

Поток электронов, который движется в одном направлении, называется током. Когда электроны перемещаются по проводнику, то они сталкиваются с неким трением. Это трение называют сопротивлением. Сопротивление «ужимает» свободное перемещения электронов, таким образом снижая величину тока.

Более научное определение тока – скорость изменения количество электронов в определенном направлении. Единица измерения тока — Ампер (I). В электронных схемах протекающий ток лежит в диапазоне миллиампера (1 ампер = 1000 миллиампер). Например, свойственный ток для светодиода 20mA.

2

Единица измерения напряжения – Вольт (В). Батарея – является источником напряжения. Напряжение 3В, 3.3В, 3.7В и 5В является наиболее распространенным в электронных схемах и устройствах.

Напряжение является причиной, а ток – результатом.

Единица измерения сопротивления – Ом (Ω).

Шаг 2: Источник питания

5

Аккумуляторная батарея — источник напряжения или «правильно» источник электроэнергии. Батарея производит электроэнергию за счет внутренней химической реакции. На внешней стороне у неё присутствуют две клеммы. Одна из них является положительным выводом (+ V), а другая отрицательным (-V), или «землёй». Обычно источники питания бывают двух типов.

  • Батареи;
  • Аккумуляторы.

Батарейки используются один раз, а затем утилизируются. Аккумуляторы могут быть использованы несколько раз. Батарейки бывают разных форм и размеров, от миниатюрных, используемых для питания слуховых аппаратов и наручных часов до батарей размером с комнату, которые обеспечивают резервное питание для телефонных станций и компьютерных центров.

В зависимости от внутреннего состава источники питания могут быть разных типов. Несколько наиболее распространённых типов, используемых в робототехнике и технических проектах:

Батарейки с таким напряжением могут иметь различные размеры. Наиболее распространённые размеры АА и ААА. Диапазон ёмкости от 500 до 3000 мАч.

3В литиевая «монетка»

Простые схемы для начинающих. Учимся читать электросхемы

Все эти литиевые элементы рассчитаны номинально на 3 В (при нагрузке) и с напряжением холостого хода около 3,6 вольт. Ёмкость может достигать от 30 до 500мAч. Широко используется в карманных устройствах за счёт их крошечных размеров.

6

Простые схемы для начинающих. Учимся читать электросхемы

Эти батареи имеют высокую плотность энергии и могут заряжаться почти мгновенно. Другая важная особенность — цена. Такие аккумуляторы дешёвые (в сравнение с их размерами и ёмкостями). Этот тип батареи часто используется в робототехнических самоделках.

7

3.7 В литий-ионные и литий-полимерные аккумуляторы

Простые схемы для начинающих. Учимся читать электросхемы

Они имеют хорошую разряжающую способность, высокую плотность энергии, отличную производительность и небольшой размер. Литий-полимерный аккумулятор широко используется в робототехнике.

Простые схемы для начинающих. Учимся читать электросхемы

Наиболее распространенная форма — прямоугольная призма с округленными краями и клеммами, что расположены сверху. Ёмкость составляет около 600 мАч.

8

Свинцово-кислотные аккумуляторы являются рабочей лошадкой всей радио-электронной промышленности. Они невероятно дешёвы, перезаряжаются и их легко купить. Свинцово-кислотные аккумуляторы используются в машиностроении, UPS (источниках бесперебойного питания), робототехнике и других системах, где необходим большой запас энергии, а вес не так важен. Наиболее распространенными являются напряжения 2В, 6В, 12В и 24В.

Последовательно-параллельное соединение батарей

9

Источник питания может быть подключен последовательно или параллельно. При подключении последовательно величина напряжения увеличивается, а когда подключение параллельное – увеличивается текущая величина тока.

Существует два важных момента относительно батарей:

Емкость является мерой (как правило, в Aмп-ч) заряда, хранящейся в батарее, и определяется массой активного материала, содержащегося в ней. Ёмкость представляет собой максимальное количество энергии, которую можно извлечь при определенно заданных условиях.

Тем не менее, фактические возможности хранения энергии аккумулятора могут значительно отличаться от номинального заявленного значения, а ёмкость батареи сильно зависит от возраста и температуры, режимов зарядки или разрядки.

Ёмкость батареи измеряется в ватт-часах (Вт*ч), киловатт-часах (кВт-ч), ампер-часах (А*ч) или миллиампер-час (мА * ч). Ватт-час – это напряжение (В) умноженное на силу тока(I) (получаем мощность – единица измерения Ватты (Вт)), которое может выдавать батарея определенный период времени (как правило, 1 час).

Так как напряжение фиксируемое и зависит от типа аккумулятора (щелочные, литиевые, свинцово-кислотные, и т.д.), часто на внешней оболочке отмечают лишь Ач или мАч (1000 мАч = 1Aч). Для более продолжительной работы электронного устройства необходимо брать батареи с низким током утечки.

Чтобы определить срок службы аккумулятора, разделите ёмкость на фактический ток нагрузки. Цепь, которая потребляет 10 мА и питается от 9-вольтной батареи будет работать около 50 часов: 500 мАч / 10 мА = 50 часов.

10

Во многих типах аккумуляторов, вы не можете «забрать» энергию полностью (другими словами, аккумулятор не может быть полностью разряжен), не нанося серьезный, и часто непоправимый ущерб химическим составляющим. Глубина разрядки (DOD) аккумулятора определяет долю тока, которая может быть извлечена. Например, если DOD определено производителем как 25%, то только 25% от ёмкости батареи может быть использовано.

Темпы зарядки/разрядки влияют на номинальную ёмкость батареи. Если источник питания разряжается очень быстро (т.е., ток разряда высокий), то количество энергии, которое может быть извлечено из батареи снижается и ёмкость будет ниже. С другой стороны если батарея разряжается очень медленно (используется низкий ток), то ёмкость будет выше.

Температура батареи также будет влиять на ёмкость. При более высоких температурах ёмкость аккумулятора, как правило, выше, чем при более низких температурах. Тем не менее, намеренное повышение температуры не является эффективным способом повышения ёмкости аккумулятора, так как это также уменьшает срок службы самого источника питания.

11

С-Ёмкость: Токи заряда и разряда любой аккумуляторной батареи измеряются относительно её емкости. Большинство батарей, за исключением свинцово-кислотных, оценено в 1C. Например, батарея с ёмкостью 1000mAh, выдает 1000mA в течение одного часа, если уровень – 1C. Та же батарея, с уровнем 0.5C, выдает 500mA в течение двух часов. С уровнем 2C, та же батарея выдает 2000mA в течение 30 минут. 1C часто упоминается как одночасовой разряд; 0.5C – как двухчасовой и 0.1C – как 10-часовой.

Ёмкость батареи обычно измеряется с помощью анализатора. Анализаторы тока отображают информацию в процентах отталкиваясь от значения номинальной ёмкости. Новая батарея иногда выдает больше 100 % тока. В таком случае, батарея просто оценена консервативно и может выдержать более длительное время, чем указанно производителем.

Зарядное устройство может быть подобрано с точки зрения ёмкости батареи или величины C. Например зарядное устройство с номиналом C/10 полностью зарядит батарею через 10 часов, зарядное устройство с номиналом в 4C, зарядило бы аккумулятор через 15 минут.

Очень быстрые темпы зарядки (1 час или менее) обычно требуют того, чтобы зарядное устройство тщательно контролировало параметры аккумулятора, такие как предельное напряжение и температура, чтобы предотвратить перезаряд и повреждения батареи.

12

Напряжение гальванического элемента определяется химическими реакциями, что проходят внутри него. Например, щелочные элементы – 1.5 В, все свинцово- кислотные – 2 В, а литиевые – 3 В. Батареи могут состоять из нескольких ячеек, поэтому вы редко, где сможете увидеть 2-вольтовую свинцово-кислотную батарею.

Обычно они соединены вместе внутри, чтобы выдавать 6 В, 12 В или 24 В. Не стоит забывать о том, что номинальное напряжение в «1.5-вольтовой» батарее типа AA фактически начинается с 1.6 В, затем быстро опускается к 1.5, после чего медленно дрейфует вниз к 1.0 В, при котором батарею уже принято считать ‘разряженной’.

13

Как лучше выбрать батарею для поделки?

Как вы уже поняли, в свободном доступе, можно найти много типов батарей с разным химическим составом, таким образом, не легко выбрать, какое питание является лучшим для именно вашего проекта.

Если проект очень энергозависимый (большие системы звука и моторизованные самоделки) следует выбирать свинцово-кислотную батарею.

Если вы хотите построить переносную поделку, которая будет потреблять небольшой ток, то следует выбрать литиевую батарею. Для любого портативного проекта (легкий вес и умеренное питание) выбираем литиево-ионный аккумулятор. Вы можете выбрать более дешёвый аккумулятор на основе метало-никелевого гидрида (NIMH), хотя они более тяжёлые, но не уступают литиево-ионным в остальных характеристиках.

Если вы хотели бы сделать энергоёмкий проект то литиево-ионный щелочной (LiPo) аккумулятор будет лучшим вариантом, потому что он имеет маленькие размеры, лёгок по сравнению с другими типами батарей, перезаряжается очень быстро и выдаёт ток высокого значения.

Хотите, чтобы Ваши аккумуляторы прослужили долгое время? Используйте высококачественное зарядное устройство, которое имеет датчики для поддержания надлежащего уровня заряда и подзарядки малым током. Дешёвое зарядное устройство убьёт ваши аккумуляторы.

14

Шаг 3: Резисторы

15

Резистор — очень простой и наиболее распространённый элемент на схемах. Он применяется для того, чтобы управлять или ограничивать ток в электрической цепи.

16

Резисторы — пассивные компоненты, которые только потребляют энергию (и не могут производить её). Резисторы, как правило, добавляются в цепь, где они дополняют активные компоненты, такие как ОУ, микроконтроллеры и другие интегральные схемы. Обычно они используются, чтобы ограничить ток, разделить напряжения и линии ввода/вывода.

17

Сопротивление резистора измеряется в Омах. Большие значения могут быть сопоставлены с префиксом кило-, мега-, или гига, чтобы сделать значения легко читаемыми. Часто можно увидеть резисторы с меткой кОм и МОм диапазоне (гораздо реже мОм резисторы). Например, 4,700Ω резистор эквивалентен 4.7kΩ резистору и 5,600,000Ω резистор можно записать в виде 5,600kΩ или (более обычно ) 5.6MΩ.

Существуют тысячи различных типов резисторов и множество фирм, что их производят. Если брать грубую градацию то существуют два вида резисторов:

  • с чётко заданными характеристиками;
  • общего назначения, чьи характеристики могут «гулять» (производитель сам указывает возможное отклонение).

Пример общих характеристик:

  • Температурный коэффициент;
  • Коэффициент напряжения;
  • Шум;
  • Частотный диапазон;
  • Мощность;
  • Физический размер.

По своим свойствам резисторы могут быть классифицированы как:

Линейный резистор — тип резистора, сопротивление которого остается постоянным с увеличением разности потенциалов (напряжения), что прикладываются к нему (сопротивление и ток, что проходит через резистор не изменяется от приложенного напряжения). Особенности вольт-амперной характеристики такого резистора — прямая линия.

Не линейный резистор – это резистор, сопротивление которого изменяется в зависимости от значения прикладываемого напряжения или протекающего через него тока. Это тип имеет нелинейную вольт-амперную характеристику и не строго следует закону Ома.

Есть несколько типов нелинейных резисторов:

  • Резисторы ОТК (Отрицательный Температурный Коэффициент) — их сопротивление понижается с повышением температуры.
  • Резисторы ПЕК (Положительный Температурный Коэффициент) — их сопротивление увеличивается с повышением температуры.
  • Резисторы ЛЗР (Светло-зависимые резисторы) — их сопротивление изменяется с изменением интенсивности светового потока.
  • Резисторы VDR (Вольт зависимые резисторы) — их сопротивление критически понижается, когда значение напряжения превышает определенное значение.

Не линейные резисторы используются в различных проектах. ЛЗР используется в качестве датчика в различных робототехнических проектах.

Кроме этого, резисторы бывают с постоянным и переменным значением:

Резисторы постоянного значения — типы резисторов, значение которых уже установлено, при производстве и не может быть изменено во время использования.

Переменный резистор или потенциометр – тип резистора, значение которого может быть изменено во время использования. Этот тип обычно имеет вал, который поворачивается или перемещается вручную для изменения значения сопротивления в фиксированном диапазоне, например, от. 0 кОм до 100 кОм.

Этот тип резистора состоит из «упаковки», в которой содержится два или более резисторов. Он имеет несколько терминалов, благодаря которым может быть выбрано значение сопротивления.

По составу резисторы бывают:

Сердечник таких резисторов отливается из углерода и связующего вещества, создающих требуемое сопротивление. Сердечник имеет чашеобразные контакты, удерживающие стержень резистора с каждой стороны. Весь сердечник заливается материалом (наподобие бакелита) в изолированном корпусе. Корпус имеет пористую структуру, поэтому углеродные композиционные резисторы чувствительны к относительной влажности окружающей среды.

Эти типы резисторов обычно производит шум в цепи за счёт электронов, проходящих через углеродные частицы, таким образом, эти резисторы, не используются в «важных» схемах, хотя они дешевле.

20

Резистор, который сделан путём нанесения тонкого слоя углерода вокруг керамического стержня — называется углеродо-осаждённым резистором. Он изготавливается путем нагревания керамических стержней внутри колбы метана и осаждением углерода вокруг них. Значение резистора определяется количеством углерода, осажденного вокруг керамического стержня.

Резистор выполнен путем осаждения распыляемого металла в вакууме на керамическую основу прута. Эти типы резисторов очень надежны, имеют высокую устойчивость, а также имеют высокий температурный коэффициент. Хотя они дороже по сравнению с другими, но используются в основных системах.

Проволочный резистор изготовлен путем намотки металлической проволоки вокруг керамического сердечника. Металлический провод представляет собой сплав различных металлов подобранных согласно заявленным особенностям и сопротивлениям требуемого резистора. Эти тип резистора имеет высокую стабильность, а также выдерживает большие мощности, но, как правило, они более громоздкие по сравнению с другими типами резисторов.

Эти резисторы изготовлены путем обжига некоторых металлов, смешанные с керамикой на керамической подложке. Доля смеси в смешанном метало-керамическом резисторе определяет значение сопротивления. Этот тип очень стабилен, а также имеет точно вымеренное сопротивление. Их в основном используют для поверхностного монтажа на печатных платах.

21

Резисторы, значение сопротивлений которых лежит в пределах допуска, поэтому они очень точны (номинальная величина находится в узком диапазоне).

Все резисторы имеют допуск, который даётся в процентах. Допуск говорит нам, насколько близко к номинальному значению сопротивления может изменяться. Например, 500Ω резистор, который имеет значение допуска 10%, может иметь сопротивление между 550Ω или 450Ω. Если же резистор имеет допуск 1%, сопротивление будет меняться только на 1%. Таким образом, 500Ω резистор может варьироваться от 495Ω 505Ω.

Прецизионный резистор — резистор, у которого уровень допуска всего 0.005%.

Проволочный резистор, разработан таким образом, чтобы легко перегореть, когда номинальная мощность превысет граничный порог. Таким образом плавкий резистор имеет две функции. Когда питание не превышено, он служит ограничителем тока. Когда номинальная мощность превышена, оа функционирует как предохранитель, после перегорания цепь становится разорванной, что защищает компоненты от короткого замыкания.

22

Теплочувствительный резистор, значение сопротивления которого изменяется с изменением рабочей температуры.

Терморезисторы показывают или положительный температурный коэффициент (PTC) или отрицательный температурный коэффициент (NTC).

Насколько изменяется сопротивление с изменениями рабочей температуры зависит от размера и конструкции терморезистора. Всегда лучше проверить справочные данные, чтобы узнать все спецификации терморезисторов.

23

Резисторы, сопротивление которых меняется в зависимости от светового потока, что падает на его поверхность. В тёмной среде сопротивление фоторезистора очень высоко, несколько M Ω. Когда интенсивный свет попадает на поверхность, сопротивление фоторезистора существенно падает.

Таким образом фоторезисторы — переменные резисторы, сопротивление которых зависит от количества света, что падает на его поверхность.

Выводные и безвыводные типы резисторов:

Выводные резисторы: Этот тип резисторов использовался в самых первых электронных схемах. Компоненты подключались к выводным клеммам. С течением времени, начали использоваться печатные платы, в монтажные отверстия которых впаивались выводы радиоэлементов.

Резисторы поверхностного монтажа:

Этот тип резистора всё более часто стали использовать начиная с введения технологии поверхностного монтажа. Обычно этот тип резистора создается путём использования тонкоплёночной технологии.

25

Шаг 4: Стандартные или общие значения резисторов

27

Система обозначений имеет свои истоки, которые выходят с начала прошлого века, когда большинство резисторов были углеродными с относительно плохими производственными допусками. Объяснение довольно простое – используя 10% допуск можно уменьшить число выпускаемых резисторов.

Было бы малоэффективно производить резисторы с сопротивлением 105 Ом, так как 105 находится в пределах 10%-го диапазона допуска резистора на 100 Ом. Следующая рыночная категория составляет 120 Ом, потому что у резистора на 100 Ом с 10%-й терпимостью, будет диапазон между 90 и 110 Ом.

У резистора на 120 Ом диапазон лежит между 110 и 130 Ом. По этой логики предпочтительно выпускать резисторы с 10% допуском 100, 120, 150, 180, 220, 270, 330 и так далее (соответственно округлены). Это — ряд E12, показанный ниже.

Терпимость 20% E6,

Терпимость 10% E12,

Терпимость 5% E24 (и обычно 2%-я терпимость),

Терпимость 2% E48,

E96 1% терпимости,

E192 0,5, 0,25, 0,1% и выше допуски.

Стандартные значения резисторов:

Е6 серии: (20% допуска) 10, 15, 22, 33, 47, 68

E12 серии: (10% допуска) 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82

E24 серии: (5% допуска) 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91

E48 серии: (2% допуска) 100, 105, 110, 115, 121, 127, 133, 140, 147, 154, 162, 169, 178, 187, 196, 205, 215, 226, 237, 249, 261, 274, 287, 301, 316, 332, 348, 365, 383, 402, 422, 442, 464, 487, 511, 536, 562, 590, 619, 649, 681, 715, 750, 787, 825, 866, 909, 953

E96 серии: (1% допуска) 100, 102, 105, 107, 110, 113, 115, 118, 121, 124, 127, 130, 133, 137, 140, 143, 147, 150, 154, 158, 162, 165, 169, 174, 178, 182, 187, 191, 196, 200, 205, 210, 215, 221, 226, 232, 237, 243, 249, 255, 261, 267, 274, 280, 287, 294, 301, 309, 316, 324, 332, 340, 348, 357, 365, 374, 383, 392, 402, 412, 422, 432, 442, 453, 464, 475, 487, 491, 511, 523, 536, 549, 562, 576, 590, 604, 619, 634, 649, 665, 681, 698, 715, 732, 750, 768, 787, 806, 825, 845, 866, 887, 909, 931, 959, 976

E192 серии: (0,5, 0,25, 0,1 и 0,05% допуска) 100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 132, 133, 135, 137, 138, 140, 142, 143, 145, 147, 149, 150, 152, 154, 156, 158, 160, 162, 164, 165, 167, 169, 172, 174, 176, 178, 180, 182, 184, 187, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, 215, 218, 221, 223, 226, 229, 232, 234, 237, 240, 243, 246, 249, 252, 255, 258, 261, 264, 267, 271, 274, 277, 280, 284, 287, 291, 294, 298, 301, 305, 309, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 357, 361, 365, 370, 374, 379, 383, 388, 392, 397, 402, 407, 412, 417, 422, 427, 432, 437, 442, 448, 453, 459, 464, 470, 475, 481, 487, 493, 499, 505, 511, 517, 523, 530, 536, 542, 549, 556, 562, 569, 576, 583, 590, 597, 604, 612, 619, 626, 634, 642, 649, 657, 665, 673, 681, 690, 698, 706, 715, 723, 732, 741, 750, 759, 768, 777, 787, 796, 806, 816, 825, 835, 845, 856, 866, 876, 887, 898, 909, 920, 931, 942, 953, 965, 976, 988

При разработке оборудования лучше всего придерживаться самого низкого раздела, т.е. лучше использовать E6, а не E12. Таким образом, чтобы число различных групп в любом оборудовании было минимизировано.

28

Как научиться читать электрическую схему

Любая радиоаппаратура включает в себя отдельные радиодетали, которые спаяны между собой при помощи определенного способа. Все эти элементы отражаются на электрической схеме условными графическими значениями.

Чтобы научиться читать документ, необходимо понимать условное обозначение всех проводниковых элементов электроцепи. Каждая деталь имеет свое графическое обозначение и включает в себя условную конструкцию с характерными особенностями.

Простые схемы для начинающих. Учимся читать электросхемы

Простейшая электрическая схема

Проще всего работать с таким элементом как электронный конденсатор с резисторами, динамиками и другим электрооборудованием с автоматизацией. Как правило, их легко узнать без всякой таблицы с условными обозначениями. Учиться на них проще. Сложнее осуществлять работу с полупроводниками, а именно транзисторами, симисторами и микросхемами.

К примеру, каждый биполярный транзистор имеет в себе три вывода, а именно, базу, коллектор и эмиттер. По этой причине необходимы условные изображения и уточняющая информация в виде латинских букв. Изучение их может занять много дней, как и обучение их опознания.

Обратите внимание! Кроме букв на каждой схеме есть цифры. Они говорят о нумерации и технических характеристиках. Стоит указать, что самостоятельно научиться читать документ невозможно, и поэтому нужны уроки и обучающие пособия.

Простые схемы для начинающих. Учимся читать электросхемы

Условные графические значения электросхемы

Основные правила

В ответ на вопрос, как читать электросхемы, стоит уточнить, что это нужно делать слева направо, от начала до самого конца. В этом заключается основное правило. Следующее правило заключается в расчленении единого чертежа на небольшие картинки или простые цепи. Она состоит из источника электротока, приемника тока, прямого привода, обратного провода и одного контакта аппарата.

Поэтому, начиная изучать документ, нужно разбить его на части. Далее обязательно нужно принимать во внимание все детали, с замечаниями, экспликациями, пояснениями и спецификациями. Если в чертеже находятся ссылки, то нужно изучить и их.

Обратите внимание! Чертежи, которые отражают момент работу электропитания, электрозащиты, управления и сигнализации, должны быть изучены на количество источников питания, взаимодействие, согласованность совместной работы, оценку последствий вероятных неисправностей, нарушение проводной изоляции, проверку схемы с отсутствием ложных цепей, оценку надежности электрического питания, режим работы оборудования и проверку выполнения мер, которые обеспечивают безопасное проведение работ.

Простые схемы для начинающих. Учимся читать электросхемы

Разбивка чертежа на несколько частей как основное правило

Условные обозначения

Согласно нормативным документам, есть стандартные графические условные обозначения в однолинейных и двухлинейных схемах. Далее представлена таблица с подобными символами под названием электрические схемы для начинающих условные обозначения. Стоит указать, что в чертежах используются также цифры и буквы. Подобная маркировка регулируется с помощью нормативных документов, а именно гостов.

Простые схемы для начинающих. Учимся читать электросхемы

Условное значение букв на документе

Как составлять схему

Составление электрической схемы должно производиться опытным электриком с учетом существующих гостов, поясняющих и уточняющих работу тех или иных проводников. Бывают согласно госту электрические схемы структурными, функциональными, принципиальными, монтажными, общими и объединенными. Сделать любую из приведенного перечня можно, выстраивая простейшие элементы друг с другом.

Простые схемы для начинающих. Учимся читать электросхемы

Составление документа по госту

Электросхемы? — разберется даже школьник!

Правильное чтение схем дает возможность понять, каким образом элементы взаимодействуют между собой и как протекают все рабочие процессы.

Безусловно, что для понимания работы сложных электросистем по схемам вам предстоит изучить и другие обозначения. Условное обозначение датчиков также может отличаться, но все они обычно подписаны, как и все другие элементы, преобразующие энергию в электрической сети автомобиля.

У автоматических выключателей на изображении указывается тип расцепителя. Иногда пунктирную линию вообще не рисуют, а у контактов просто указывают принадлежность к реле K1.

Поэтому каждый начинающий электрик должен в первую очередь овладеть способностями чтения разнообразных принципиальных схем. В различных схемах изображение таких элементов может меняться, но элементы всегда подписаны и интуитивно понятно нарисованы, по-этому, ниже будут приведены только некоторые из них, иначе эта статья растянется надолго.

Этот важнейший вопрос, к сожалению, часто недооценивают, поэтому одной из основных задач чтения схемы является проверка: сможет ли устройство прийти из любого промежуточного состояния в рабочее и не произойдут ли при этом непредвиденные оперативные переключения.

Детектор скрытой проводки

Индикатор скрытой проводки – это специальное устройство для обнаружения электросети, проложенной в штробах под штукатуркой стены. Без него не обходится даже простой ремонт домашней электропроводки и розеток. Прибор необходим, когда старая проводка в стенах была проложена без исполнительных схем, и определить место её укладки в отсутствие специального прибора невозможно.

При выполнении ремонтных работ целостность изоляции скрытой проводки может быть нарушена сверлом или гвоздем. Подобные действия могут вызвать поражение электрическим током, а также вывести из строя всю домашнюю сеть.

Простые схемы для начинающих. Учимся читать электросхемы

Микросхема детектора для скрытой проводки

Для обнаружения скрытой проводки в большинстве случаев будет достаточно устройства, выполненного из стрелочного или цифрового омметра с полевым транзистором. Корпусом радиоэлемента проводят по участку стены и, если он «видит» проводку, то значения на омметре сразу же меняются. Модифицированный детектор изображен на схеме ниже. Для его изготовления нужны:

  • Батарейка;
  • Светодиод для индикации;
  • Транзистор;
  • Резисторы на 1 Мом, 100 кОм, 330 Ом и 220 Ом;
  • Переключатель для начала в работы.

Простые схемы для начинающих. Учимся читать электросхемы

Детали для детектора

Автоматический регулятор оборотов кулера

Это устройство будет полезным как для простых людей, так и для специалистов по ремонту и обслуживанию ПК. Зачастую производители комплектующих для компьютерной техники подключают питание кулера, охлаждающего процессор или материнскую плату, напрямую.

Из-за этого устройство непрерывно вращается на максимальной скорости, несмотря на то, что ПК бездействует. Установив самодельный автоматический регулятор, можно не беспокоиться о температуре процессора, ведь датчик будет включать охлаждение автоматически, когда это действительно необходимо.

Регулятор оборотов не только увеличит срок службы кулера, но и снизит громкость шумов в помещении. Сделать его можно на основе двух транзисторов, резистора и термистора.

Простые схемы для начинающих. Учимся читать электросхемы

Самоделка в виде регулятора кулера

Беспроводной светодиод

Этот примитивный прибор не имеет какой-либо практической ценности, но способен удивить далеких от электроники людей. Он представляет собой светодиод, который начинает светиться, будучи не подключенным к источнику питания.

Схема основана на одном транзисторе, который является практически полноценным генератором тока высокой частоты. Индуктор представлен в виде обычной проволоки, которая согнута в форме кольца. У светодиода имеется приемная петля, получающая на некотором расстоянии от индуктора электрический сигнал и заставляющая лампочку гореть.

Простые схемы для начинающих. Учимся читать электросхемы

Схема беспроводного светодиода

Для схемы понадобятся:

  • 6 пальчиковых батареек;
  • Светодиод;
  • Транзистор (БФ494);
  • Конденсатор на 0.1 мкФ;
  • Резистор на 33 кОм;
  • Индуктор 330 мкГ;
  • Провода.

Простые схемы для начинающих. Учимся читать электросхемы

«Магический» светодиод

Простейший инвертер без транзисторов

Как известно из теоретического курса физики, инвертер преобразует постоянный электрический ток в переменный. Примечательно то, что в большинстве случаев при сборке такого прибора вполне можно обойтись без пайки. Достаточно соединить все контакты простой скруткой.

Инвертер, конечно, будет недолговечным, так как реле рано или поздно выйдет из строя, но купить его снова не составит больших проблем. Иногда можно даже найти ненужный переключатель от старого прибора или выпаять его самостоятельно.

Важно! Процесс создания инвертера поможет понять принцип работы постоянного и переменного тока, конвертации одного типа в другой.

Простые схемы для начинающих. Учимся читать электросхемы

Схема инвертора

Для прибора понадобятся:

  • Трансформатор от радиоприемника, с обмоткой на 220 и 12 Вольт;
  • Реле на 12 Вольт;
  • Провода для соединения деталей;
  • Нагрузка на схему в виде обычной лампочки.

Простые схемы для начинающих. Учимся читать электросхемы

Инвертер простой конструкции без пайки

Автоматический выключатель

Схема аппарата крайне проста, но очень надежна. Принцип работы выключателя основан на работе конденсаторе. Когда происходит нажатие на кнопку, загорается светодиод или лампа. Когда конденсатор будет полностью разряжен, источник света погаснет.

Принцип работы следующий: при нажатии кнопки с возвратом происходит зарядка конденсатора, и он превращается в «питательный» элемент. Когда выключатель разомкнет контакт, радиоэлемент будет разряжаться и питать собой цепь, в которой установлена лампа.

Вам это будет интересно Установка УЗИП — схемы подключения, правила монтажа

Простые схемы для начинающих. Учимся читать электросхемы

Электросхема выключателя на кнопке

Важно! Так как конденсатор не может вечно держать заряд, то свет рано или поздно погаснет. Когда это произойдет – сказать сложно, так как все зависит от характеристик радиоэлементов, используемых в приборе.

Полезно такое устройство будет, например, в погребе или техническом подполье. Человек нажимает кнопку, берет необходимые ему вещи и, чтобы не тянуться к выключателю с грузом в руках, просто выходит из подвала. Когда конденсатор полностью разрядится, лампочка потухнет.

Простые схемы для начинающих. Учимся читать электросхемы

Собранный выключатель

Описание работы

Если электросхема построена правильно, то и работать она будет исправно. Работает все так. От источника питания идет заряд, который попадает под клеммник в проводник и электромагнитную катушку реле. Через катушку электроток устремляется к контактам. Как только ток попадает в контакты, начинает работать вся сеть, включается диод. Благодаря электродвижущей силе поддерживается первоначальный электроток, и он достигает наибольших значений.

Обратите внимание! Стоит указать, что без электродвижущей самоиндукции поддержание тока в контуре невозможно, поскольку при большом значении амплитуды, радиоэлементы начинают плохо работать. Благодаря этому импульсу, пробиваются полупроводниковые переходы, и выводится аппарат из функционирования. Сегодня диоды уже встраиваются в реле. Это позволяет работать электросхеме правильно.

В целом, в дополнение к теме, как научиться читать электрические принципиальные схемы, стоит отметить, что читать их необходимо с опорой на обучающий материал, в котором указывается информация о том, что значат те или иные условные обозначения. Только после получения полной информации, можно приступать к работе, если производятся соответствующие действия в электропроводке.

Блог радиолюбителя: принципиальные схемы, радиоэлектронные самоделки

Принципиальная схема микрофонного усилителя. Устройство собрано на двух канальном операционным усилителе TLO82

Схема мощного тиристорного регулятора напряжения

Принципиальная схема регулятора напряжения собранного на двух тринистерах и двух динисторах.

С помощью этого устройства можно регулировать напряжения от несколько десятков вольт до 220 В, при активной нагрузке.

Тринисторы VS1 и VS2 подключены параллельно между собой, на встречу друг к другу и последовательно к нагрузке. При включении тринисторы закрыты, через R5 происходит зарядка конденсаторов C1, C2. Конденсаторы C1, C2 и переменный резистор R5 образуют фазосдвигающую цепочку.

Динисторы VS3 и VS4 образуют импульсы, с помощью которых происходит управление тринисторами.

В тот момент когда конденсаторы зарядятся напряжением равным напряжению открытия динистора, произойдет скачок напряжения который включит тринистор и через нагрузку потечет ток. В начале отрицательного полупериода напряжения сети, происходит отключение данного тринистора и происходит новый цикл зарядки конденсаторов, но уже в обратной полярности. Происходит открытие другого тринистера и динистора.

Используемые детали

  • R1, R2, R3, R4 — 51 Ом
  • R5 — 270 кОм
  • VS1 — КУ202Н
  • VS2 — КУ202Н
  • VS3 — КН102А
  • VS4 — КН102Н
  • C1 — 0,25 мкФ
  • C2 — 0,25 мкФ

Установив VS1 и VS2 на радиаторы, можно увеличить нагрузку до 1,5 кВт.

Конденсаторы необходимо использовать рассчитанные на напряжение не менее 300 В.

В схеме можно использовать динисторы КН102Б но при этом нужно уменьшить емкость конденсаторов до 0,2 мкФ или КН102В — ёмкость уменьшить до 0,15 мкФ. Переменный резистор типа СП2-2-1

среда, 31 марта 2021 г.

Микрофонный усилитель на двух транзисторах

Принципиальная схема усилителя для микрофона.

Простая схема подходит для новичков радиолюбителей.

Данная схема собрана на двух высокочастотных транзисторах разной проводимости. Транзисторы подключены в схеме общий эмиттер — общий эмиттер. При снижении напряжения питания усилитель продолжает стабильно работать, благодаря сочетанию транзисторов разной структуры.

Транзисторы можно заменить на аналоги — КТ3102, КТ3107 или можно использовать зарубежные аналоги например VT1 можно заменить BC307, BC308.

Коэффициент усиления данного микрофонного усилителя будет не менее 200 в полосе частот от 50Гц до 20 кГц.

четверг, 25 марта 2021 г.

При повороте ключа зажигания ничего не происходит.

автомобиль zaz sens

Столкнулся с такой проблемой — автомобиль «zaz sens» перестал заводиться. Вставляю ключ зажигания, поворачиваю до первого щелчка вроде все как обычно, начинает качать бензонасос. Насос перестает качать, я поворачиваю ключ зажигания, чтобы завести автомобиль и в этот момент все гаснет и ничего не происходит, как будто автомобиль выключается. При этом приборная панель, габаритные огни и даже аварийка не моргает и ничего не работает. Если включить свет в салоне, то он светит очень тускло, едва заметно. При следующих попытках завести, уже и бензонасос не качает. Если подождать пару часов, то повторяется та же ситуация, качает насос при попытке запустить стартер — все отключается и тишина.

Как я решил данную проблему.

Первое на что я подумал, это плохой контакт на массе. Я взял провод и подсоединил минус от аккумулятора напрямую к кузову, при этом клеммы не отсоединял. Попробовал завести ничего не изменилось.

стрелкой показано где находится масса автомобиль zaz sens

Второе что я сделал — это проверил все предохранители, они все оказались исправные.

На следующей день я решил зарядить аккумулятор, снял клеммы и поставил на зарядку. Полностью зарядил, не помогло.

Решил почистить клеммы, стал опять откручивать и случайно заметил что гайка на плюсовой клемме аккумулятора — очень слабо закручена, к которой присоединяется тонкий провод идущий от блока управления. Я открутил, все почистил и закрутил потуже. И все завелось, как обычно, даже ещё лучше.

При повороте ключа зажигания ничего не происходит

Надеюсь данная информация кому-нибудь пригодится. Всем удачи!

суббота, 19 декабря 2020 г.

Программы для разводки печатных плат

на картинке изображено 4 программы для радиолюбителей. с помощью которых выполняется трассировка платы

Sprint-Layout

easyeda

ZenitPCB

DesignSpark PCB

понедельник, 2 ноября 2020 г.

Детектор скрытой проводки схема

изображена схема искателя скрытой проводки на трех транзисторах

У всех бывает такая ситуация, когда нужно пробурить отверстие в стене, например повесить картину. Чтобы не повредить провод, проходящий в стене, нужно при себе иметь детектор проводки. Схема данного устройства простая и подходит для новичков радиолюбителей.

Принцип работы данного устройства заключается в том что вокруг любого проводника под напряжением, образуется электрическое поле которое и улавливает детектор.

Схема состоит из двух биполярных транзисторов Q1, Q3, которые образуют мультивибратор и на полевом Q2, выполняющий функцию электронного ключа.

Если кнопка SB1 нажата, а электрического поля в зоне действия антенного щупа WA1 нет, то Q2 открыт и мультивибратор не работает, светодиод LH1 не горит. Когда около щупа WA1 появляется электрическое поле, транзистор Q2 закроется, шунтирование базовой цепи транзистора Q3 прекратится и мультивибратор начнет работать, а светодиод будет светиться. Антенный щуп должен быть от 50мм до 100мм. Если чувствительность слишком большая, то длину антенны следует укоротить.

Данным детектором можно искать неисправную свечу зажигания в автомобиле или найти обрыв провода сетевого удлинителя. Подключив к розетке удлинитель, нужно вести детектором вдоль провода, где светодиод погаснет там и будет обрыв. Все очень просто, где светодиод не светится — там нет электричества.

Источник https://tyt-sxemi.ru/chitat-ehlektricheskie-skhemy/

Источник https://electricavdome.ru/elektronnye-sxemy-dlya-nachinayushhix-kak-sdelat-elektrosxemu-svoimi-rukami.html

Источник https://www.zvix.ru/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: